
Chapter 3 Selected Problem Solutions

Section 3-2

3-13.
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3-21. P(X = 0) = 0.023 = 8 x 10-6

P(X = 1) = 3[0.98(0.02)(0.02)]=0.0012
P(X = 2) = 3[0.98(0.98)(0.02)]=0.0576
P(X = 3) = 0.983 = 0.9412

3-25. X = number of components that meet specifications
    P(X=0) = (0.05)(0.02)(0.01) = 0.00001
    P(X=1) = (0.95)(0.02)(0.01) + (0.05)(0.98)(0.01)+(0.05)(0.02)(0.99) = 0.00167
    P(X=2) = (0.95)(0.98)(0.01) + (0.95)(0.02)(0.99) + (0.05)(0.98)(0.99) = 0.07663
    P(X=3) =  (0.95)(0.98)(0.99) = 0.92169
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3-27.
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a) P(X ≤ 1.25) = 7/8
b) P(X ≤ 2.2) = 1
c) P(-1.1 < X ≤ 1) = 7/8 − 1/8 = 3/4
d) P(X > 0) = 1 − P(X ≤ 0) = 1 − 5/8 = 3/8

3-31.
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3-33. a) P(X ≤ 3) = 1
b) P(X ≤ 2) = 0.5
c) P(1 ≤ X ≤ 2) = P(X=1) = 0.5
d) P(X>2) = 1 − P(X≤2) = 0.5
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3-37 Mean and Variance
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3-41. Mean and variance for exercise 3-19
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3-45. Determine x where range is [0,1,2,3,x] and mean is 6.
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Section 3-5

3-47. E(X) = (3+1)/2 = 2, V(X) = [(3-1+1)2 -1]/12 = 0.667

3-49. X=(1/100)Y, Y = 15, 16, 17, 18, 19.

E(X) = (1/100) E(Y) = 17.0
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Section 3-6
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3-61. n=3 and p=0.25
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3-67. Let X denote the passengers with tickets that do not show up for the flight. Then, X is binomial
with n = 125 and p = 0.1.
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3-69. Let X denote the number of questions answered correctly. Then, X is binomial with n = 25 
and p = 0.25.
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Section 3-7
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3-75. Let X denote the number of calls needed to obtain a connection.  Then, X is a geometric random variable 
with p = 0.02
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c) E(X) = 1/0.02 = 50

3-77 p = 0.005 , r = 8
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3-81. a) E(X) = 4/0.2 = 20

b) P(X=20) = 0436.02.0)80.0(
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e) The most likely value for X should be near µX. By trying several cases, the most likely value is x = 19.

3-83. Let X denote the number of fills needed to detect three underweight packages.  Then X is a negative
binomial random variable with p = 0.001 and r = 3.
a) E(X) = 3/0.001 = 3000
b) V(X) = [3(0.999)/0.0012] = 2997000.  Therefore, σX = 1731.18
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d) E(X) = 4(4/20) = 0.8
    V(X) = 4(0.2)(0.8)(16/19) = 0.539

3-91. Let X denote the number of men who carry the marker on the male chromosome for an increased risk for high
blood pressure. N=800, K=240 n=10

a) n=10
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3-99. P X e( ) .= = =−0 0 05λ . Therefore, λ = −ln(0.05) = 2.996.

Consequently, E(X) = V(X) = 2.996.

3-101. a) Let X denote the number of flaws in one square meter of cloth. Then, X is a Poisson random variable

    with λ  = 0.1. 0045.0
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b) Let Y denote the number of flaws in 10 square meters of cloth. Then, Y is a Poisson random variable

    with λ  = 1. 3679.0
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c) Let W denote the number of flaws in 20 square meters of cloth. Then, W is a Poisson random variable

    with λ  = 2. 1353.0)0( 2 === −eWP
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3-105. a) Let X denote the number of flaws in 10 square feet of plastic panel. Then, X is a Poisson random

    variable with λ  = 0.5. 6065.0)0( 5.0 === −eXP
b) Let Y denote the number of cars with no flaws,
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c) Let W denote the number of cars with surface flaws. Because the number of flaws has a
    Poisson distribution, the occurrences of surface flaws in cars are independent events with
   constant probability. From part a., the probability a car contains surface flaws is 1−0.6065 =
   0.3935.  Consequently, W is binomial with n = 10 and p = 0.3935.
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Supplemental Exercises

3-107. Let X denote the number of totes in the sample that do not conform to purity requirements.  Then, X has a 
hypergeometric distribution with N = 15, n = 3, and K = 2.
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3-109. Let Y denote the number of calls needed to obtain an answer in less than 30 seconds.

a) 0117.075.025.075.0)75.01()4( 33 ==−==YP
b) E(Y) = 1/p = 1/0.75 = 1.3333

3-111. a) Let X denote the number of messages sent in one hour.  1755.0
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b) Let Y denote the number of messages sent in 1.5 hours. Then, Y is a Poisson random variable with 
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c) Let W denote the number of messages sent in one-half hour. Then, W is a Poisson random variable with 

   λ  = 2.5. 2873.0)1()0()2( ==+==< WPWPWP

3-119. Let X denote the number of products that fail during the warranty period.  Assume the units are
independent.  Then, X is a binomial random variable with n = 500 and p = 0.02.

a) P(X = 0) = =




 5000 )98.0()02.0(
0

500
4.1 x 10-5

b) E(X) = 500(0.02) = 10
c) P(X >2) = 1 − P(X ≤ 1) = 0.9995

3-121. a) P(X ≤ 3) = 0.2 + 0.4 = 0.6
b) P(X > 2.5) = 0.4 + 0.3 + 0.1 = 0.8
c) P(2.7 < X < 5.1) = 0.4 + 0.3 = 0.7
d) E(X) = 2(0.2) + 3(0.4) + 5(0.3) + 8(0.1) = 3.9
e) V(X) = 22(0.2) + 32(0.4) + 52(0.3) + 82(0.1) − (3.9)2 = 3.09

3-125. Let X denote the number of orders placed in a week in a city of 800,000 people.  Then X is a Poisson
random variable with λ = 0.25(8) = 2.
a) P(X ≥ 3) = 1 − P(X ≤ 2) = 1 − [e-2 + e-2(2) + (e-222)/2!] = 1 − 0.6767 = 0.3233.
b) Let Y denote the number of orders in 2 weeks.  Then, Y is a Poisson random variable with λ = 4, and
    P(Y<2) = P(Y ≤ 1) = e-4 + (e-441)/1! = 0.0916.

3-127. Let X denote the number of totes in the sample that exceed the moisture content.  Then X is a binomial
random variable with n = 30.  We are to determine p.

If P(X ≥ 1) = 0.9, then P(X = 0) = 0.1.  Then 1.0)1()(
0

30 300 =−





pp , giving 30ln(1−p)=ln(0.1),

which results in p = 0.0738.

3-129. a) Let X denote the number of flaws in 50 panels.  Then, X is a Poisson random variable with
    λ = 50(0.02) = 1.  P(X = 0) = e-1 = 0.3679.
b) Let Y denote the number of flaws in one panel, then
    P(Y ≥ 1) = 1 − P(Y=0) = 1 − e-0.02 = 0.0198.  Let W denote the number of panels that need to be
    inspected before a flaw is found.  Then W is a geometric random variable with p = 0.0198 and
    E(W) = 1/0.0198 = 50.51  panels.

c.) 0198.01)0(1)1( 02.0 =−==−=≥ −eYPYP
   Let V denote the number of panels with 2 or more flaws.  Then V is a binomial random
   variable with n=50 and p=0.0198
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