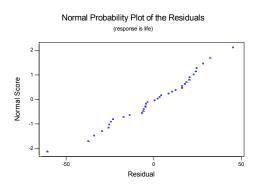
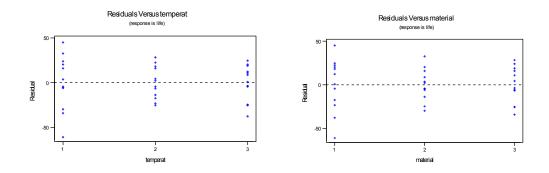

Chapter 14 Selected Problem Solutions

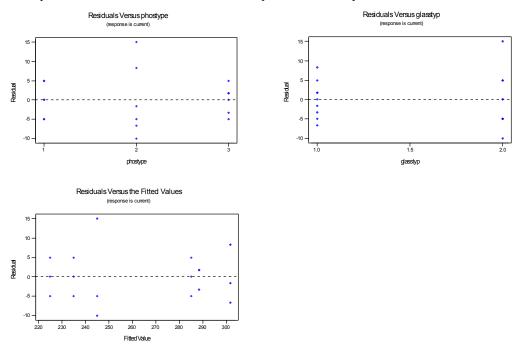
Section 14-3

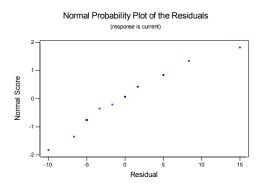

14-1.	a) Analysis of Variance	for	life			
	Source	DF	SS	MS	F	P
	material	2	10683.7	5341.9	7.91	0.002
	temperat	2	39118.7	19559.4	28.97	0.000
	material*temperat	4	9613.8	2403.4	3.56	0.019
	Error	27	18230.7	675.2		
	Total	35	77647.0			


Main factors and interaction are all significant.

b)The mean life for material 2 is the highest at temperature level 1, in the middle at temperature level 2 and the lowest at temperature level 3. This shows that there is an interaction. Interaction Plot - Means for life

c) There appears to be slightly more variability at temperature 1 and material 1. The normal probability plot shows that the assumption of normality is reasonable.


14-3 a)
$$H_0: \tau_1 = \tau_2 = 0$$


 H_1 : at least one $\tau_i \neq 0$

b) Analysis of Variance for current									
Source	DF	SS	MS	F	P				
glasstyp	1	14450.0	14450.0	273.79	0.000				
phostype	2	933.3	466.7	8.84	0.004				
glasstyp*phostype	2	133.3	66.7	1.26	0.318				
Error	12	633.3	52.8						
Total	17	16150.0							

Main effects are significant, the interaction is not significant. Glass type 1 and phosphor type 2 lead to the high mean current (brightness).

c) There appears to be slightly more variability at phosphor type 2 and glass type 2. The normal plot of the residuals shows that the assumption of normality is reasonable.

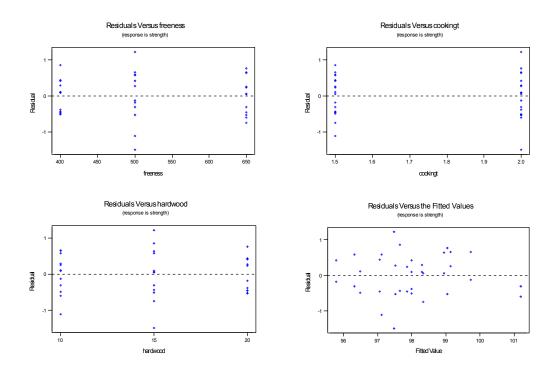
$$T = \frac{\overline{y}_{.i.} - \overline{y}_{.j.} - (\mu_i - \mu_j)}{\sqrt{2MS_E / n}}$$
 has a t distribution with $ab(n-1)$ degrees of freedom

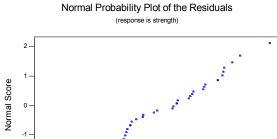
Therefore, the $(1-\alpha)$ % confidence interval on the difference in two treatment means is

$$\overline{y}_{\cdot i \cdot} - \overline{y}_{\cdot j \cdot} - t_{a/2, ab(n-1)} \sqrt{\frac{2MS_E}{n}} \le \mu_i - \mu_j \le \overline{y}_{\cdot i \cdot} - \overline{y}_{\cdot j \cdot} + t_{a/2, ab(n-1)} \sqrt{\frac{2MS_E}{n}}$$

For exercise 14-6, the mean warping at 80% copper concentration is 21.0 and the mean warping at 60% copper concentration is 18.88 a=4, b=4, n=2 and MS_E =6.78. The degrees of freedom are (4)(4)(1)=16

$$(21.0 - 18.88) - 2.120\sqrt{\frac{2*6.78}{2}} \le \mu_3 - \mu_2 \le (21.0 - 18.88) + 2.120\sqrt{\frac{2*6.78}{2}} - 3.40 \le \mu_3 - \mu_2 \le 7.64$$


Therefore, there is no significant differences between the mean warping values at 80% and 60% copper concentration.


Section 14-4

14-11	Parts a. and b.					
	Analysis of Variance f	or s	strength			
	Source	DF	SS	MS	F	P
	hardwood	2	8.3750	4.1875	7.64	0.003
	cookingtime	1	17.3611	17.3611	31.66	0.000
	freeness	2	21.8517	10.9258	19.92	0.000
	hardwood*cookingtime	2	3.2039	1.6019	2.92	0.075
	hardwood*freeness	4	6.5133	1.6283	2.97	0.042
	cookingtime*freeness	2	1.0506	0.5253	0.96	0.399
	Error	22	12.0644	0.5484		
	Total	35	70.4200			

All main factors are significant. The interaction of hardwood * freeness is also significant.

c) The residual plots show no serious problems with normality or equality of variance

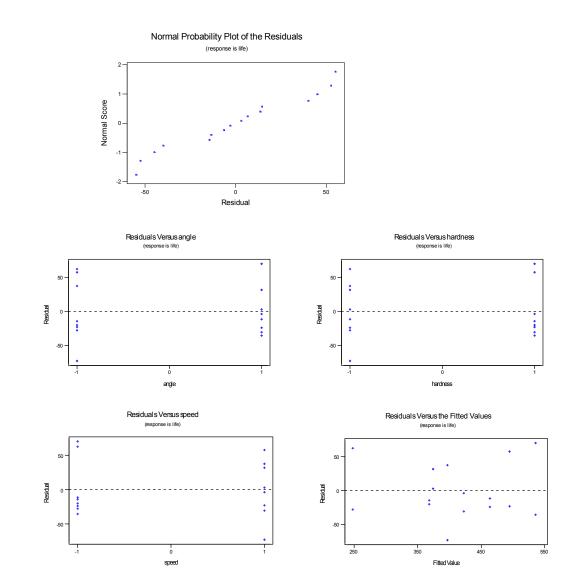
ò

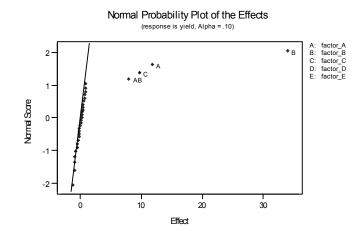
Residual

-1

Section 14-5

-2 -


14-13 a)	Analysis of Vari	ance for	life (coded	units)		
	Source	DF	SS	MS	F	P
	speed	1	1332	1332	0.49	0.502
	hardness	1	28392	28392	10.42	0.010
	angle	1	20592	20592	7.56	0.023
	speed*hardness	1	506	506	0.19	0.677
	speed*angle	1	56882	56882	20.87	0.000
	hardness*angle	1	2352	2352	0.86	0.377
	Error	9	24530	2726		
	Total	15	134588			

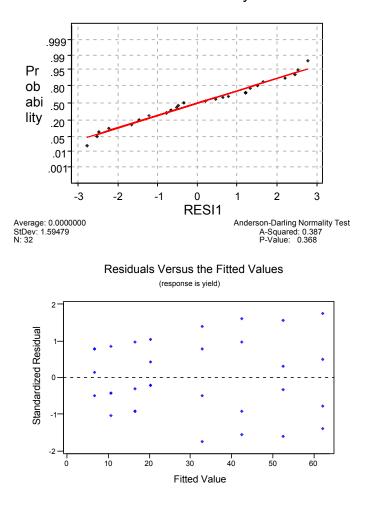

1

b) Estimated Effects and Coefficients for life (coded units)

Term	Effect	Coef	SE Coef	Т	Р
Constant		413.13	12.41	33.30	0.000
speed	18.25	9.12	12.41	0.74	0.483
hardness	84.25	42.12	12.41	3.40	0.009
angle	71.75	35.87	12.41	2.89	0.020
speed*hardness	-11.25	-5.63	12.41	-0.45	0.662
speed*angle	-119.25	-59.62	12.41	-4.81	0.001
hardness*angle	-24.25	-12.12	12.41	-0.98	0.357
speed*hardness*angle	-34.75	-17.37	12.41	-1.40	0.199

 $\hat{y} = 413.125 + 9.125x_1 + 45.12x_2 + 35.87x_3 - 59.62x_{13}$ c) Analysis of the residuals shows that all assumptions are reasonable.

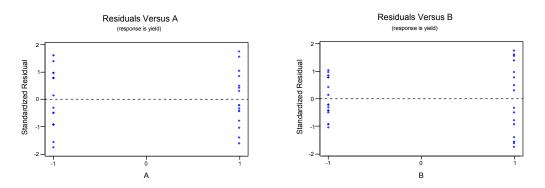
14-19. a) Factors A, B, C, and the interaction AB appear to be significant from the normal probability plot of the effects.

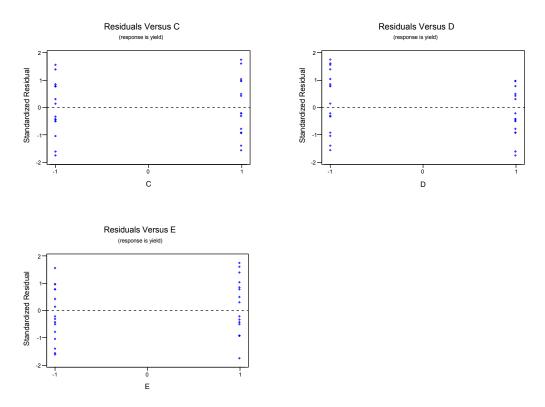

b)

Analysis of Variance for yield (coded units)

r marysis or v arrance for yr	ciù (coucu	unitsj				
Term	Effect	Coef	StDev Coef	Т	Р	
Constant		30.5312	0.2786	109.57	0.000	
factor_A	11.8125	5.9063	0.2786	21.20	0.000	
factor_B	9.6875	4.8437	0.2786	17.38	0.000	
factor_D	-0.8125	-0.4063	0.2786	-1.46	0.164	
factor_E	0.4375	0.2187	0.2786	0.79	0.444	
factor_A*factor_B	7.9375	3.9687	0.2786	14.24	0.000	
factor_A*factor_C	0.4375	0.2187	0.2786	0.79	0.444	
factor_A*factor_D	-0.0625	-0.0313	0.2786	-0.11	0.912	
factor_A*factor_E	0.9375	0.4687	0.2786	1.68	0.112	
factor_B*factor_C	0.0625	0.0313	0.2786	0.11	0.912	
factor_B*factor_D	-0.6875	-0.3437	0.2786	-1.23	0.235	
factor_B*factor_E	0.5625	0.2813	0.2786	1.01	0.328	
factor_C*factor_D	0.8125	0.4062	0.2786	1.46	0.164	
factor_C*factor_E	0.3125	0.1563	0.2786	0.56	0.583	
factor_D*factor_E	-1.1875	-0.5938	0.2786	-2.13	0.049	
Analysis of Variance	for viel	.d				
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	5	11087.9		2217.58	892.61	0.000
2-Way Interactions	10	536.3	536.3	53.63	21.59	0.000
Residual Error	16	39.7	39.7	2.48		
Total	31	11664.0				

The analysis confirms our findings from part a)


c) The normal probability plot of the residuals is satisfactory. However their variance appears to increase as the fitted value increases.

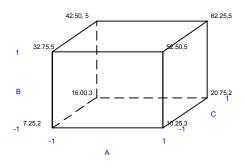


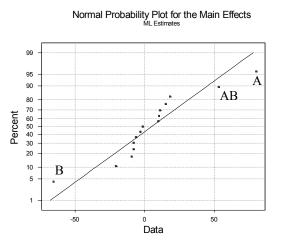
Normal Probability

d) All plots support the constant variance assumption , although there is a very slight indication that variability is greater at the high level of factor B.

.

e) The AB interaction appears to be significant. The interaction plot from MINITAB indicates that a high level of A and of B increases the mean yield, while low levels of both factors would lead to a reduction in the mean yield.




f.) To increase yield and therefor optimize the process, we would want to set A, B, and C at their high levels.

g) It is evident from the cube plot that we should run the process with all factors set at their high level.

14-21

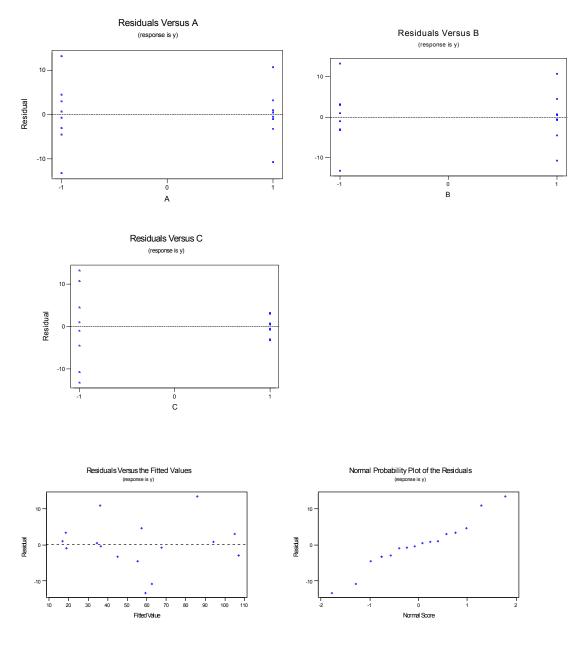
b) Based on the normal probability plot of the effects, factors A, B and AB are significant. The model would include these three factors.

c) The estimated model is: $\hat{y} = 400 + 40.124x_1 - 32.75x_2 + 26.625x_{12}$

Section 14-6

14-25 Model with four blocks

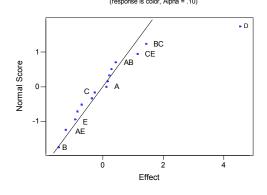
	BLOCK	A B	С	D	var_1		
	1	-1 -1	-1	-1	190		
	1	1 -1	1	-1	181		
	1	-1 1	-1	1	187		
	1	1 1	1	1	180		
	2	1 -1	-1	-1	174		
	2	-1 -1	1	-1	177		
	2	1 1	-1	1	185		
	2	-1 1	1	1	187		
	3	-1 1	-1	-1	181		
	3	1 1	1	-1	173		
	3	-1 -1	-1	1	198		
	3	1 -1	1	1	179		
	4 4	1 1	-1	-1 1	183		
	4 4	-1 1 1 -1	1 -1	-1 1	188 172		
	4	-1 -1	1	1	199		
					100		
Term Constant Block factor_A factor_B factor_D factor_A*factor_B factor_A*factor_C factor_A*factor_D factor_B*factor_C factor_B*factor_D factor_A*factor_B* factor_A*factor_B* factor_A*factor_S* factor_A*factor_C*	factor_D factor_D	Effect -10.000 -0.75 5.001 4.500 0.500 -3.750 -1.250 -1.500 -6.000 4.750 -0.255 -2.000	18 	Coef 3.375 1.625 5.000 0.375 2.500 2.250 0.250 0.250 0.250 0.250 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.125 1.000			
Term Effec Constant Block factor_A -10.00 factor_B -0.75 factor_C -0.75 factor_D 5.00	183.375 -1.625 0 -5.000 0 -0.375 0 -0.375		Coef 1.607 1.607 1.607 1.607 1.607 1.607	114.1 -1.0 -3.1 -0.2 -0.2 1.5	01 0.336 11 0.011 23 0.820 23 0.820		
Analysis of Varian Source Blocks Main Effects Residual Error Total	ce for var_ DF 1 4 10 15	_1 Seq SS 42.25 504.50 413.00 959.75	5	dj SS 42.25 04.50 13.00	Adj M 42.2 126.1 41.3	5 1.02 3 3.05	P 0.336 0.069


Factor A is the only significant factor.

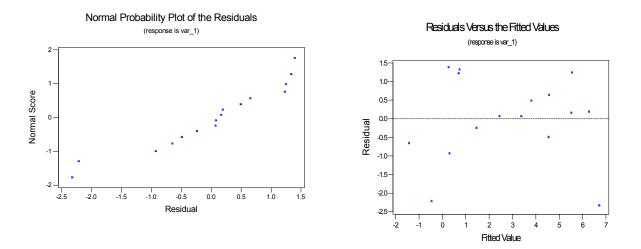
14-29 a) Estimated	Effects and	Coefficie	ents for y		
Term	Effect	Coef	StDev Coef	Т	P
Constant		56.37	2.633	21.41	0.000
Block 1		15.63	4.560	3.43	0.014
2		-3.38	4.560	-0.74	0.487

3 A -45.25 B -1.50 C 14.50 A*B 19.00 A*C -14.50 B*C -9.25	-10.88 -22.62 -0.75 7.25 9.50 -7.25 -4.63	2.633 2.633 2.633 2.633 2.633 2.633	-2.38 -8.59 -0.28 2.75 3.61 -2.75 -1.76	0.054 0.000 0.785 0.033 0.011 0.033 0.130		
Analysis of Variance Source Blocks Main Effects 2-Way Interactions Residual Error Total	DF 3 3 3 6	1502.8 9040.2	Adj SS 1502.8 9040.2 2627.2 665.5	Adj MS 500.9 3013.4 875.7 110.9	F 4.52 27.17 7.90	P 0.055 0.001 0.017

Factors A, C, AB, and AC are significant.


b) Analysis of the residuals shows that the model is adequate. There is more variability on the response associated with the low setting of factor C, but that is the only problem.

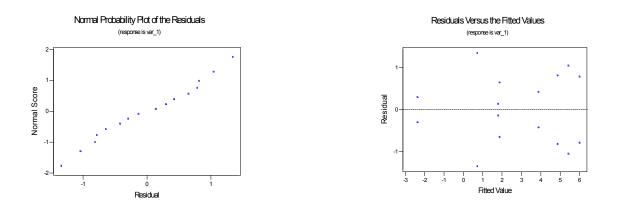
- c.) Some of the information from the experiment is lost because the design is run in 4 blocks. This causes us to lose information on the ABC interaction even though we have replicated the experiment twice. If it is possible to run the experiment in only 2 blocks, there would be information on all interactions.
- d) To have data on all interactions, we could run the experiment so that each replicate is a block (therefore only 2 blocks).


Section 14-7

14-31 a) Factors A, B and D are active factors.

Normal Probability Plot of the Effects (response is color, Alpha = .10)

b) There are no serious problems with the residual plots. The normal probability plot has a little bit of curvature at the low end and there is a little more variability at the lower and higher ends of the fitted values.

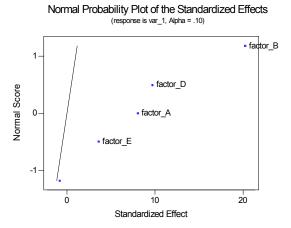


c) Part a. indicates that only A,B, and D are important. In these factors only, the design is a 2^3 with two replicates.

Estimated Effects	and Coefficients for	var 1			
Term	Effect	_Coef	StDev Coef	Т	P
Constant		2.7700	0.2762	10.03	0.000
factor_A	1.4350	0.7175	0.2762	2.60	0.032

factor_B factor_D factor_A*factor_B factor_A*factor_D factor_B*factor_D factor_A*factor_B*fa	ctor_D	-1.4650 4.5450 1.1500 -1.2300 0.1200 -0.3650	-0.7325 2.2725 0.5750 -0.6150 0.0600 -0.1825	0.2762 0.2762 0.2762 0.2762 0.2762 0.2762 0.2762	8.23 2.08 -2.23 0.22	0.000 0.071 0.057 0.833
Analysis of Variance	for va	r 1				
Source	DF	- Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	99.450	99.4499	33.1500	27.15	0.000
2-Way Interactions	3	11.399	11.3992	3.7997	3.11	0.088
3-Way Interactions	1	0.533	0.5329	0.5329	0.44	0.527
Residual Error	8	9.767	9.7668	1.2208		
Pure Error	8	9.767	9.7668	1.2208		
Total	15	121.149				

Factors A, B, D, AB and AD are significant.



The normal probability plot and the plot of the residuals versus fitted values are satisfactory.

14-35 Since factors A, B, C, and E form a word in the complete defining relation, it can be verified that the resulting design is two replicates of a 2^{4-1} fractional factorial. This is different than the design that results when C and E are dropped from the 2^{6-2} in Table 14-28 which results in a full factorial because, the factors ABDF do not form a word in the complete defining relation

Α	В	С	D	Е	var_1
-1	-1	-1	1	1	1900
1	-1	-1	-1	-1	900
-1	1	-1	-1	1	3500
1	1	-1	1	-1	6100
-1	-1	1	1	-1	800
1	-1	1	-1	1	1200
-1	1	1	-1	-1	3000
1	1	1	1	1	6800

14-37 Generators D=AB, E=AC for 2^{5-2} , Resolution III

Estimated Effects and Coefficients for var_1 (coded units)

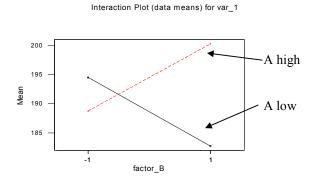
Term	Effect	Coef	SE Coef	Т	Р
Constant		3025.00	90.14	33.56	0.001
factor_A	1450.00	725.00	90.14	8.04	0.015
factor_B	3650.00	1825.00	90.14	20.25	0.002
factor_C	-150.00	-75.00	90.14	-0.83	0.493
factor_D	1750.00	875.00	90.14	9.71	0.010
factor_E	650.00	325.00	90.14	3.61	0.069

Analysis of Variance for var_1 (coded units)

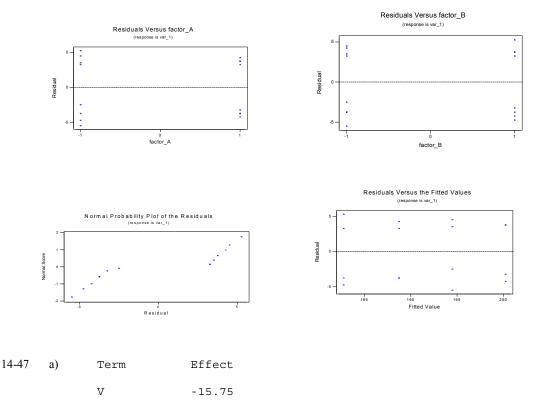
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	5	37865000	37865000	7573000	116.51	0.009
Residual Error	2	130000	130000	65000		
Total	7	37995000				

Factors A, B and D are significant.

Supplemental Exercises

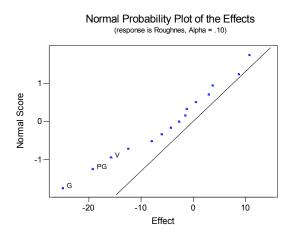

14-41 a Estimated Effects and Coefficients for var_1 (coded units)

Term Constant factor_A (PH) factor_B (CC) factor_A*factor_B	Effect 5.875 -0.125 11.625	-0.062	SE Coef 1.158 1.158 1.158 1.158		0.958	
Analysis of Variance	for var	_1 (coded u	nits)			
Source Main Effects 2-Way Interactions Residual Error Pure Error Total	DF 2 1 12 12 15	Seq SS 138.125 540.562 257.250 257.250 935.938	Adj SS 138.125 540.562 257.250 257.250	Adj MS 69.06 540.56 21.44 21.44	3.22	P 0.076 0.000


The main effect of pH and the interaction of pH and Catalyst Concentration (CC) are significant at the 0.05 level of significance.

The model used is viscosity = $191.563 + 2.937x_1 - 0.062x_2 + 5.812x_{12}$

b.) The interaction plot shows that there is a strong interaction. When Factor A is at its low level, the mean response is large at the low level of B and is small at the high level of B. However, when A is at its high level, the results are opposite.



c.) The plots of the residuals show that the equality of variance assumption is reasonable. However, there is a large gap in the middle of the normal probability plot. Sometimes, this can indicate that there is another variable that has an effect on the response but which is not included in the experiment. For example, in this experiment, note that the replicates in each cell have two pairs of values that are very similar, but there is a rather large difference in the mean values of the two pairs. (Cell 1 has 189 and 192 as one pair and 198 and 199 as the other.)

-	0 75
F	8.75
P	10.75
G	-25.00
V*F	3.00
V*P	-8.00
V*G	-2.75
F*P	-6.00
F*G	3.75
P*G	-19.25
V*F*P	-1.25
V*F*G	0.50
V*P*G	-1.50
F*P*G	-12.50
V*F*P*G	-4.25

b)

According to the probability plot, factors V, P, and G and, PG are possibly significant.

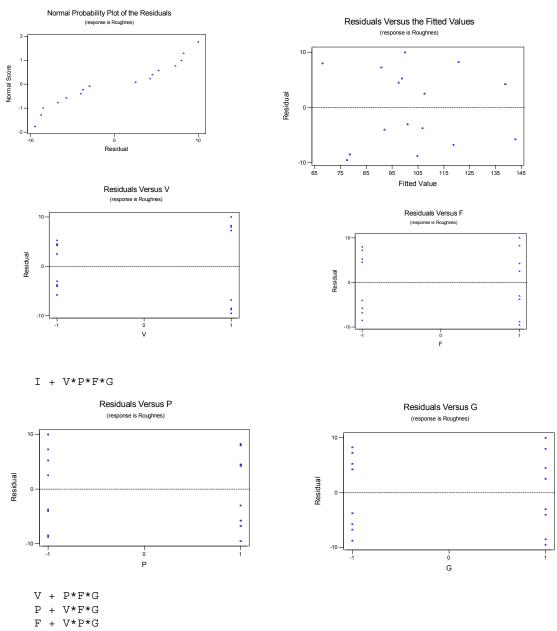
Estimated Effects and Coefficients for roughnes (coded units)

Term Constant	Effect	Coef 102.75	SE Coef 2.986	T 34.41	P 0.000
V	-15.75	-7.87	2.986	-2.64	0.046
F	8.75	4.37	2.986	1.46	0.203
P	10.75	5.37	2.986	1.80	0.132
G	-25.00	-12.50	2.986	-4.19	0.009
V*F	3.00	1.50	2.986	0.50	0.637
V*P	-8.00	-4.00	2.986	-1.34	0.238
V*G	-2.75	-1.38	2.986	-0.46	0.665
F*P	-6.00	-3.00	2.986	-1.00	0.361
F*G	3.75	1.88	2.986	0.63	0.558
P*G	-19.25	-9.63	2.986	-3.22	0.023

Analysis of Variance for roughnes (coded units)

Analysis of Variance for Roughnes (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	4260.7	4260.7	1065.2	7.46	0.024


2-Way Interactions	6	2004.7	2004.7	334.1	2.34	0.184
Residual Error	5	713.5	713.5	142.7		
Total	15	6979.0				

$$\hat{y} = 102.75 - 7.87x_1 + 5.37x_3 - 12.50x_4 - 9.63x_{34}$$

c) From the analysis, we see that water jet pressure (P), abrasive grain size (G), and jet traverse speed (V) are significant along with the interaction of water jet pressure and abrasive grain size

d) The residual plots appear to indicate the assumption of constant variance may not be met. The assumption of normality appears reasonable.

14-49 The design uses G=VPF as the generator. Alias Structure

G + V*P*G

V*P + F*G V*F + P*G V*G + P*F

Estimated Effects and Coefficients for C9 (coded units)

Term Constant V	Effect -14.75	Coe 102.6 -7.3	53 6	Coef .365 .365		P 0.004 0.366		
P	-28.25	-14.1	L2 6	.365	-2.22	0.157		
F	-1.25	-0.6	52 6	.365	-0.10	0.931		
G	-14.75	-7.3	38 6.	.365	-1.16	0.366		
P*G	17.75	8.8	38 6.	.365	1.39	0.298		
Analysis of	Variance	for C9	(coded uni	its)				
Source		DF	Seq SS	Ad	j SS	Adj MS	F	Р
Main Effect	S	4	2469.5	246	59.5	617.4	1.90	0.373
2-Way Inter	actions	1	630.1	63	30.1	630.1	1.94	0.298
Residual Er	ror	2	648.3	64	48.3	324.1		
Total		7	3747.9					

The results do not show any significant factors. A lot of the information is lost due to the half-fraction of the design.

14-51 Design Generators: D = AB E = AC

Alias Structure

I + ABD + ACE + BCDE

 $\begin{array}{l} A+BD+CE+ABCDE\\ B+AD+CDE+ABCE\\ C+AE+BDE+ABCD\\ D+AB+BCE+ACDE\\ E+AC+BCD+ABDE\\ BC+DE+ABE+ACD\\ BE+CD+ABC+ADE \end{array}$

Design

StdOrder	A	В	С	D	E
1	-1	-1	-1	1	1
2	1	-1	-1	-1	-1
3	-1	1	-1	-1	1
4	1	1	-1	1	-1
5	-1	-1	1	1	-1
6	1	-1	1	-1	1
7	-1	1	1	-1	-1
8	1	1	1	1	1