Chapter 15 Selected Problem Solutions

Section 15-2

15-1. 1. The parameter of interest is median of pH.

2. H_0 : $\tilde{\mu} = 7.0$

 $3 H_1$: $\widetilde{\mu} \neq 7.0$

4. α=0.05

5. The test statistic is the observed number of plus differences or $r^+ = 8$.

6. We reject H_0 if the *P*-value corresponding to $r^+ = 8$ is less than or equal to $\alpha = 0.05$.

7. Using the binomial distribution with n=10 and p=0.5, *P*-value = $2P(R^* \ge 8|p=0.5)=0.109$

8. Conclusion: we cannot reject H_0 . There is not enough evidence to reject the manufacturer's claim that the median of the pH is 7.0

15-5 a. 1. The parameter of interest is the median compressive strength

2. H_0 : $\tilde{\mu} = 2250$

3. H_1 : $\tilde{\mu} > 2250$

4. α=0.05

- 5. The test statistic is the observed number of plus differences or $r^+ = 7$.
- 6. We reject H_0 if the *P*-value corresponding to $r^+ = 7$ is less than or equal to $\alpha = 0.05$.
- 7. Using the binomial distribution with n=12 and p=0.5, P-value = P(R^{*} ≥7|p=0.5)=.3872
- 8. Conclusion: cannot reject H_0 . The median compressive strength is not more than 2250.

b. 1. The parameter of interest is the median compressive strength

2. H_0 : $\tilde{\mu} = 2250$

3. H_1 : $\tilde{\mu} > 2250$

4. α=0.05

5. Test statistic is
$$z_0 = \frac{r^+ - 0.5n}{0.5\sqrt{n}}$$

6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$

7. Computation:
$$z_0 = \frac{7 - 0.5(12)}{0.5\sqrt{12}} = 0.577$$

8. Conclusion: cannot reject H_0 . The median compressive strength is not more than 2250.

The *P*-value = $1-\Phi(0.58) = 1-7190 = 0.281$

15-7. 1. The parameter of interest is the median titanium content 2. H_0 : $\tilde{\mu} = 8.5$ $3. H_1$: $\widetilde{\mu} \neq 8.5$ 4. α=0.05 $r^{+} - 0.5n$

5. Test statistic is
$$z_0 = \frac{r - 0.5r}{0.5\sqrt{n}}$$

6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$ 7. Computation: $z_0 = \frac{7 - 0.5(20)}{0.5\sqrt{20}} = -1.34$

- 8. Conclusion: cannot reject H_0 . The median titanium content is 8.5. The *P*-value = 2*P(|Z| > 1.34) = 0.1802.
- 15-9. 1. The parameters of interest are the median hardness readings for the two tips $2.H_0:\widetilde{\mu}_D=0$ 3. H_1 : $\widetilde{\mu}_D \neq 0$ 4. α=0.05

5. The test statistic is $r = min(r^+, r^-)$.

6. Since α =0.05 and n=8, Appendix,= Table VII gives the critical value of $r_{0.05}^*$ =2. We will reject

 H_0 in favor of H_1 if $r \le 1$. 7. $r^+ = 6$ and $r^- = 2$ and so r=min(6,2) = 28. Conclusion: cannot reject H_0 . There is not significant difference in the tips.

15-11. 1. The parameters of interest are the median drying times for the two formulations.

2. H_0 : $\tilde{\mu}_D = 0$ 3. H_1 : $\tilde{\mu}_D \neq 0$

4. α=0.05

5. Test statistic is $z_0 = \frac{r^+ - 0.5n}{0.5\sqrt{n}}$

6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$

7. Computation: $z_0 = \frac{15 - 0.5(20)}{0.5\sqrt{20}} = 2.24$

8. Conclusion: reject H_0 . There is a difference in the median drying times between the two formulations.

The *P*-value = 2*P(|Z| > 2.24) = 0.025.

15-17. a) $\alpha = P(Z > 1.96) = 0.025$

b)
$$\beta = P\left(\frac{X}{\sigma / \sqrt{n}} = 1.96 \mid \mu = 1\right) = P(Z < -1.20) = 0.115$$

c) The sign test that rejects if $R^- \le 1$ has $\alpha = 0.011$ based on the binomial distribution.

d) $\beta = P(R^- > 1 | \mu = 1) = 0.1587$. Therefore, R⁻ has a binomial distribution with p=0.1587 and n = 10 when $\mu = 1$. Then $\beta = 0.487$. The value of β is greater for the sign test than for the normal test because the Z-test was designed for the normal distribution.

Section 15-3

15-21 1. The parameter of interest is the mean titanium content 2. $H_0: \mu = 8.5$ 3. $H_1: \mu \neq 8.5$ 4. $\alpha = 0.05$ 5. The test statistic is $w = min(w^+, w^-)$.

6. We will reject H_0 if $w \le w_{0.05}^* = 52$, since $\alpha = 0.05$ and n = 20, the value in Appendix A, Table VIII.

- 7. $w^+ = 71$ and $w^- = 102$ and so w = min(71, 102) = 71
- 8. Conclusion: Since 71>52, we cannot reject H_0 .
- 15-23 1. The parameter of interest is the mean titanium content

2. H_0 : $\mu = 2.5$

3. H_1 : $\mu < 2.5$

4. α=0.05

5. The test statistic $w = min(w^+, w^-)$.

6. We will reject H_0 if $w \le w_{0.05}^* = 65$, since $\alpha = 0.05$ and n = 22 the value in Appendix A, Table VIII.

7. $w^+ = 225$ and $w^- = 8$ and so w = min(225, 8) = 8

8.Conclusion: Since 8 < 65, we reject H_0 .

15-27. 1. The parameters of interest are the mean blood cholesterol levels.

2. $H_0: \mu_D = 0$ 3. $H_1: \mu_D \neq 0$ 4. $\alpha = 0.05$ 5. The test statistic is $w = min(w^+, w^-)$. 6. We will reject H_0 is $w \le w_{0.05}^* = 25$, since $\alpha = 0.05$ and n = 15, the value in Appendix A, Table VIII.

7. $w^+ = 118$ and $w^- = 1$ and so w=min(118, 1) = 1 Since 1 < 258. Conclusion: Since 1 < 25, we reject H_0 .

Section 15-4

15-31. 1. The parameters of interest are the mean image brightness'. 2. H_0 : $\mu_1 = \mu_2$ 3. $H_1: \mu_1 > \mu_2$ 4. α=0.025 5. The test statistic is $z_0 = \frac{W_1 - \mu_{w_1}}{\sigma_{w_2}}$ 6. We will reject H_0 if $Z_0 > Z_{0.025} = 1.96$ 7. $w_1 = 40$, $\mu_{w_1} = 85.5$ and $\sigma_{w_1}^2 = 128.25$ $z_0 = \frac{54 - 85.5}{11.32} = -2.78$ Since $Z_0 < 1.96$, cannot reject H_0 8. Conclusion: do not reject H_0 . P-value = 0.9973 15-35. 1. The parameters of interest are the mean etch rates 2. $H_0: \mu_1 = \mu_2$ 3. $H_1: \mu_1 \neq \mu_2$

4. $\alpha = 0.025$ 5. The test statistic is $z_0 = \frac{W_1 - \mu W_1}{\sigma_{w_1}}$ 6. We will reject H_0 if $|Z_0| > Z_{0.025} = 1.96$ 7. $w_1 = 55$, $\mu_{w_1} = 105$ and $\sigma_{w_1}^2 = 175$ $z_0 = \frac{55 - 105}{13.23} = -3.77$ Since $|Z_0| < 1.96$, reject H_0 8. Conclusion: reject H_0 .

P-value = 0.0001

Section 15-5

15-37. Kruskal-Wallis Test on strength mixingte N Median Ave Rank Ζ 4 2945 9.6 0.55 1 2 4 3075 12.9 2.12 2942 2650 9.0 3 4 4 0.24 4 -2.91 Overall168.5H = 10.00DF = 3P = 0.019H = 10.03DF = 3P = 0.018 (adjusted for ties) * NOTE * One or more small samples Reject H₀

Supplemental

15-43. 1. The parameter of interest is median of surface finish. 2. H_0 : $\tilde{\mu} = 10.0$ $3 H_1$: $\widetilde{\mu} \neq 10.0$ 4. α=0.05 5. The test statistic is the observed number of plus differences or $r^+ = 5$. 6. We reject H_0 if the *P*-value corresponding to $r^+ = 5$ is less than or equal to $\alpha = 0.05$. 7. Using the binomial distribution with n=10 and p=0.5, P-value = 2P(R^{*} \geq 5|p=0.5)=1.0 8. Conclusion: we cannot reject H_0 . We cannot reject the claim that the median is 10 µin. The parameter of interest is the median fluoride emissions 15-45. $H_0: \widetilde{\mu} = 6$ $H_1: \widetilde{\mu} < 6$ α=0.05 Using Minitab (Sign Rank Test) Sign test of median = 6.000 versus < 6.000 N Below Equal Above P Median 15 9 2 4 0.1334 4.000 У Do not reject H₀ 1. The parameters of interest are the median impurity levels. 15-47. 2. H_0 : $\tilde{\mu}_D = 0$ 3. H_1 : $\tilde{\mu}_D \neq 0$ 4. α=0.01 5. The test statistic is $r = min(r^+, r^-)$. 6. Since α =0.01 and n=8, Appendix,= Table VII gives the critical value of $r_{0.01}^*=0$. We will reject H_0 in favor of H_1 if $r \leq 10$. 7. $r^+ = 1$ and $r^- = 7$ and so r=min(1,7) = 18. Conclusion: cannot reject H_0 . There is no significant difference in the impurity levels. 15-49. The parameter of interest is the median fluoride emissions $H_0: \mu = 6$ $H_1: \mu < 6$ α=0.05 Using Minitab Wilcoxon signed-rank t test Test of median = 6.000 versus median < 6.000 N for Wilcoxon Estimated Test Statistic P Median Ν 19.0 0.035 15 13 5.000 Reject H₀ The Wilcoxon signed-rank test applies to symmetric continuous distributions. The test to applies to the mean of the distribution. 1. The parameters of interest are the mean volumes 15-51. 2. H_0 : $\mu_1 = \mu_2$

3. $H_1: \mu_1 \neq \mu_2$ 4. $\alpha = 0.01$ 5. The test statistic is $w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} - w_1$

6. We will reject H_0 if $w \le W_{0.01}^* = 71$, since $\alpha = 0.01$ and $n_1 = 10$ and $n_2 = 10$, the value in Appendix A, Table IX.

7. $w_1 = 42$ and $w_2 = 78$ and so since 42 is less than 78, we reject H_0

8. Conclusion: reject H₀

15-57.	Kruskal-W	allis T	est on VOL	UME	
	TEMPERAT	Ν	Median	Ave Rank	Z
	70	5	1245	12.4	2.69
	75	5	1220	7.9	-0.06
	80	5	1170	3.7	-2.63
	Overall	15		8.0	
			P = 0.00	-	
	H = 9.57	DF = 2	P = 0.00	8 (adjusted	for ties)
	Reject H ₀ , P-value=0.0009				