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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

1.

N N e b

Understand and describe sample spaces and events for random experiments with graphs, tables,
lists, or tree diagrams

. Interpret probabilities and use probabilities of outcomes to calculate probabilities of events in dis-

crete sample spaces

. Calculate the probabilities of joint events such as unions and intersections from the probabilities

of individual events

. Interpret and calculate conditional probabilities of events
. Determine the independence of events and use independence to calculate probabilities
. Use Bayes’ theorem to calculate conditional probabilities

. Understand random variables

CD MATERIAL

8.

Use permutation and combinations to count the number of outcomes in both an event and the
sample space.
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Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

SAMPLE SPACES AND EVENTS

Random Experiments

If we measure the current in a thin copper wire, we are conducting an experiment. However,
in day-to-day repetitions of the measurement the results can differ slightly because of small
variations in variables that are not controlled in our experiment, including changes in ambient
temperatures, slight variations in gauge and small impurities in the chemical composition of
the wire if different locations are selected, and current source drifts. Consequently, this exper-
iment (as well as many we conduct) is said to have a random component. In some cases,
the random variations, are small enough, relative to our experimental goals, that they can be
ignored. However, no matter how carefully our experiment is designed and conducted, the
variation is almost always present, and its magnitude can be large enough that the important
conclusions from our experiment are not obvious. In these cases, the methods presented in this
book for modeling and analyzing experimental results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often
encounter. When we incorporate the variation into our thinking and analyses, we can make
informed judgments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other areas
of engineering and science. Figure 2-1 displays the important components. A mathematical
model (or abstraction) of the physical system is developed. It need not be a perfect abstraction.
For example, Newton’s laws are not perfect descriptions of our physical universe. Still, they are
useful models that can be studied and analyzed to approximately quantify the performance of a
wide range of engineered products. Given a mathematical abstraction that is validated with
measurements from our system, we can use the model to understand, describe, and quantify
important aspects of the physical system and predict the response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a sys-
tem, even though the variables that we control are not purposely changed during our study.
Figure 2-2 graphically displays a model that incorporates uncontrollable inputs (noise) that
combine with the controllable inputs to produce the output of our system. Because of the

Controlled
variables

i

Input =——| System > Output
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Model Noise
variables

Physical system

Measurements Analysis

Figure 2-1 Continuous iteration between model Figure 2-2  Noise variables affect the
and physical system. transformation of inputs to outputs.



18

CHAPTER 2 PROBABILITY

Call 1 2 3 4

S TR N

Call duration [ R R ——

Time 0 5 10 15 20
c Minutes
g
3 Call 1 2 3
Call 3 blocked
Call duration I I
Time 0 5 10 15 20
Voltage Minutes
Figure 2-3 A closer examination of the system Figure 2-4  Variation causes disruptions in the system.

identifies deviations from the model.

Definition

uncontrollable inputs, the same settings for the controllable inputs do not result in identical
outputs every time the system is measured.

An experiment that can result in different outcomes, even though it is repeated in the
same manner every time, is called a random experiment.

For the example of measuring current in a copper wire, our model for the system might
simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of current
are expected. Ohm’s law might be a suitable approximation. However, if the variations are
large relative to the intended use of the device under study, we might need to extend our model
to include the variation. See Fig. 2-3.

As another example, in the design of a communication system, such as a computer or
voice communication network, the information capacity available to service individuals using
the network is an important design consideration. For voice communication, sufficient
external lines need to be purchased from the phone company to meet the requirements of a
business. Assuming each line can carry only a single conversation, how many lines should be
purchased? If too few lines are purchased, calls can be delayed or lost. The purchase of too
many lines increases costs. Increasingly, design and product development is required to meet
customer requirements at a competitive cost.

In the design of the voice communication system, a model is needed for the number of calls
and the duration of calls. Even knowing that on average, calls occur every five minutes and that
they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals and lasted
for precisely five minutes, one phone line would be sufficient. However, the slightest variation in
call number or duration would result in some calls being blocked by others. See Fig. 2-4. A system
designed without considering variation will be woefully inadequate for practical use. Our model
for the number and duration of calls needs to include variation as an integral component. An
analysis of models including variation is important for the design of the phone system.

2-1.2 Sample Spaces

To model and analyze a random experiment, we must understand the set of possible out-
comes from the experiment. In this introduction to probability, we make use of the basic
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concepts of sets and operations on sets. It is assumed that the reader is familiar with these
topics.

Definition

The set of all possible outcomes of a random experiment is called the sample space
of the experiment. The sample space is denoted as S.

A sample space is often defined based on the objectives of the analysis.

EXAMPLE 2-1 Consider an experiment in which you select a molded plastic part, such as a connector, and
measure its thickness. The possible values for thickness depend on the resolution of the meas-
uring instrument, and they also depend on upper and lower bounds for thickness. However, it
might be convenient to define the sample space as simply the positive real line

S=R"={x|x>0}
because a negative value for thickness cannot occur.
If it is known that all connectors will be between 10 and 11 millimeters thick, the sample
space could be

S={x|10<x <11}

If the objective of the analysis is to consider only whether a particular part is low, medium,
or high for thickness, the sample space might be taken to be the set of three outcomes:

S = {low, medium, high}

If the objective of the analysis is to consider only whether or not a particular part con-
forms to the manufacturing specifications, the sample space might be simplified to the set of
two outcomes

S = {yes, no}

that indicate whether or not the part conforms.

It is useful to distinguish between two types of sample spaces.

Definition
A sample space is discrete if it consists of a finite or countable infinite set of outcomes.
A sample space is continuous if it contains an interval (either finite or infinite) of
real numbers.

In Example 2-1, the choice S = R is an example of a continuous sample space, whereas
S ={yes, no} is a discrete sample space. As mentioned, the best choice of a sample space
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EXAMPLE 2-2

depends on the objectives of the study. As specific questions occur later in the book, appro-
priate sample spaces are discussed.

If two connectors are selected and measured, the extension of the positive real line R is to take
the sample space to be the positive quadrant of the plane:

S=R"XR"

If the objective of the analysis is to consider only whether or not the parts conform to the
manufacturing specifications, either part may or may not conform. We abbreviate yes and no
as y and n. If the ordered pair yn indicates that the first connector conforms and the second
does not, the sample space can be represented by the four outcomes:

S = {yy, yn, ny, nn}

If we are only interested in the number of conforming parts in the sample, we might sum-
marize the sample space as

S =1{0,1,2}

As another example, consider an experiment in which the thickness is measured until a
connector fails to meet the specifications. The sample space can be represented as

S = {n, yn, yyn, yyyn, yyyyn, and so forth}

In random experiments in which items are selected from a batch, we will indicate whether
or not a selected item is replaced before the next one is selected. For example, if the batch
consists of three items {a, b, ¢} and our experiment is to select two items without replace-
ment, the sample space can be represented as

Swithout = {ab, ac, ba, bc, ca, cb}

This description of the sample space maintains the order of the items selected so that the out-
come ab and ba are separate elements in the sample space. A sample space with less detail
only describes the two items selected {{a, b}, {a, c}, {b, c}}. This sample space is the possi-
ble subsets of two items. Sometimes the ordered outcomes are needed, but in other cases the
simpler, unordered sample space is sufficient.

If items are replaced before the next one is selected, the sampling is referred to as with
replacement. Then the possible ordered outcomes are

Swith = 1aa, ab, ac, ba, bb, bc, ca, cb, cc}

The unordered description of the sample space is {{«, a}, {a, b}, {a,c}, {b, b}, {b,c}, {c,c}}.
Sampling without replacement is more common for industrial applications.

Sometimes it is not necessary to specify the exact item selected, but only a property of the
item. For example, suppose that there are 5 defective parts and 95 good parts in a batch. To
study the quality of the batch, two are selected without replacement. Let g denote a good part
and d denote a defective part. It might be sufficient to describe the sample space (ordered) in
terms of quality of each part selected as

S = {gg, gd, dg, dd}
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One must be cautious with this description of the sample space because there are many more
pairs of items in which both are good than pairs in which both are defective. These differences
must be accounted for when probabilities are computed later in this chapter. Still, this sum-
mary of the sample space will be convenient when conditional probabilities are used later in
this chapter. Also, if there were only one defective part in the batch, there would be fewer
possible outcomes

S = {gg, gd, dg}

because dd would be impossible. For sampling questions, sometimes the most important part
of the solution is an appropriate description of the sample space.

Sample spaces can also be described graphically with tree diagrams. When a sample
space can be constructed in several steps or stages, we can represent each of the n, ways of
completing the first step as a branch of a tree. Each of the ways of completing the second step
can be represented as n, branches starting from the ends of the original branches, and so forth.

Each message in a digital communication system is classified as to whether it is received
within the time specified by the system design. If three messages are classified, use a tree
diagram to represent the sample space of possible outcomes.

Each message can either be received on time or late. The possible results for three mes-
sages can be displayed by eight branches in the tree diagram shown in Fig. 2-5.

An automobile manufacturer provides vehicles equipped with selected options. Each vehicle
is ordered

With or without an automatic transmis- With one of three choices of a stereo
sion system
With or without air-conditioning With one of four exterior colors

If the sample space consists of the set of all possible vehicle types, what is the number of
outcomes in the sample space? The sample space contains 48 outcomes. The tree diagram for
the different types of vehicles is displayed in Fig. 2-6.

Consider an extension of the automobile manufacturer illustration in the previous example in
which another vehicle option is the interior color. There are four choices of interior color: red,
black, blue, or brown. However,

With a red exterior, only a black or red interior can be chosen.

With a white exterior, any interior color can be chosen.
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Figure 2-6  Tree diagram for different types of vehicles.

With a blue exterior, only a black, red, or blue interior can be chosen.

With a brown exterior, only a brown interior can be chosen.

In Fig. 2-6, there are 12 vehicle types with each exterior color, but the number of interior
color choices depends on the exterior color. As shown in Fig. 2-7, the tree diagram can be ex-
tended to show that there are 120 different vehicle types in the sample space.

2-1.3 Events

Often we are interested in a collection of related outcomes from a random experiment.

Definition
An event is a subset of the sample space of a random experiment.

We can also be interested in describing new events from combinations of existing events.
Because events are subsets, we can use basic set operations such as unions, intersections, and

Exterior color White Blue Brown

Figure 2.7 Tree dia- Interior color BlackA m /N

gram for different 12x2=24  12x4=48  12x3=36 12x1=12
types of vehicles with

interior colors. 24 + 48 + 36 + 12 = 120 vehicle types
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complements to form other events of interest. Some of the basic set operations are summa-
rized below in terms of events:

e The union of two events is the event that consists of all outcomes that are contained
in either of the two events. We denote the union as £, U E).

e The intersection of two events is the event that consists of all outcomes that are
contained in both of the two events. We denote the intersection as £, M £, .

e The complement of an event in a sample space is the set of outcomes in the sample
space that are not in the event. We denote the component of the event E as E'.

Consider the sample space S = {yy, yn, ny, nn} in Example 2-2. Suppose that the set of all out-
comes for which at least one part conforms is denoted as £,. Then,

Ey = {yy, yn, ny}
The event in which both parts do not conform, denoted as E,, contains only the single out-
come, E, = {nn}. Other examples of events are E; = (J, the null set, and £, = S, the sample

space. If E5 = {yn, ny, nn},

E\UEs=S  E NEs={yn ny} E} = {nn}

Measurements of the time needed to complete a chemical reaction might be modeled with the
sample space S = R™, the set of positive real numbers. Let

E ={x|1=x<10} and  E,={x|3<x<118}
Then,
ELUE, ={x|1=x<118 and E NE,={x|3<x<10}
Also,

E{ ={x[x=10} and E/NE,={x|10=x<118}

Samples of polycarbonate plastic are analyzed for scratch and shock resistance. The results
from 50 samples are summarized as follows:

shock resistance

high low
scratch resistance high 40 4
low 1 5

Let 4 denote the event that a sample has high shock resistance, and let B denote the event that a
sample has high scratch resistance. Determine the number of samplesin 4 N B, A", and 4 U B.

The event A M B consists of the 40 samples for which scratch and shock resistances
are high. The event 4’ consists of the 9 samples in which the shock resistance is low. The
event 4 U B consists of the 45 samples in which the shock resistance, scratch resistance,
or both are high.
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Figure 2-8 Venn diagrams.

Diagrams are often used to portray relationships between sets, and these diagrams are
also used to describe relationships between events. We can use Venn diagrams to represent a
sample space and events in a sample space. For example, in Fig. 2-8(a) the sample space of
the random experiment is represented as the points in the rectangle S. The events 4 and B are
the subsets of points in the indicated regions. Figure 2-8(b) illustrates two events with no com-
mon outcomes; Figs. 2-8(c) to 2-8(e) illustrate additional joint events.

Two events with no outcomes in common have an important relationship.

Definition
Two events, denoted as £, and £,, such that

ElﬂEzzg

are said to be mutually exclusive.

The two events in Fig. 2-8(b) are mutually exclusive, whereas the two events in Fig. 2-8(a)
are not.

Additional results involving events are summarized below. The definition of the comple-
ment of an event implies that

(EY =E
The distributive law for set operations implies that

(AUB)NC=ANC)UBNC), ad (ANBUC=AUC)NBUC)



DeMorgan’s laws imply that

(AUB) =4"NB and

Also, remember that

ANB=BNA and

2-1.4 Counting Techniques (CD Only)
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(ANB) =A'UB’

AUB=BUA

As sample spaces become larger, complete enumeration is difficult. Instead, counts of
the number outcomes in the sample space and in various events are often used to analyze the
random experiment. These methods are referred to as counting techniques and described on

the CD.

EXERCISES FOR SECTION 2-1

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-18. There can
be more than one acceptable interpretation of each experi-
ment. Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies,
three types of nonconformities might occur: functional, minor,
or cosmetic. Power supplies that are defective are further clas-
sified as to type of nonconformity.

2-4. In the manufacturing of digital recording tape, elec-
tronic testing is used to record the number of bits in error in a
350-foot reel.

2-5. In the manufacturing of digital recording tape, each of
24 tracks is classified as containing or not containing one or
more bits in error.

2-6. An ammeter that displays three digits is used to meas-
ure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee
survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?
How often are my coworkers important in my overall job
performance?
2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a tranaction service is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.
2-12. The voids in a ferrite slab are classified as small,

medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue,
black or white. Describe the set of possible orders for this
experiment.

2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connect is achieved.

2-18. In a magnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort” message is
sent to the operator. Let

s denote the success of a read operation

fdenote the failure of a read operation

F denote the failure of an error recovery procedure
S denote the success of an error recovery procedure
A denote an abort message sent to the operator.

Describe the sample space of this experiment with a tree
diagram.



26 CHAPTER 2 PROBABILITY

2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.

(a) A’ (b) ANB

) 4aNBUC (d) (BUCY

(e) ANB)UC

2-20. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.

(a) A’ (b) ANB)UANB)

o) aNBpUC (@ BUCY

(e) ANB)YUC

2-21. A digital scale is used that provides weights to the
nearest gram.

(a) What is the sample space for this experiment?

Let 4 denote the event that a weight exceeds 11 grams, let B
denote the event that a weight is less than or equal to 15
grams, and let C denote the event that a weight is greater than
or equal to 8 grams and less than 12 grams.

Describe the following events.

(b) AUB (c) ANB

(d) 4’ (e) AUBUC

H 4UC)y (@ ANBNC
(h)y BBNC (i) AU (BNC)
2-22. In an injection-molding operation, the length and

width, denoted as X and Y, respectively, of each molded part
are evaluated. Let

A denote the event of 48 < X < 52 centimeters
B denote the event of 9 < Y < 11 centimeters

C denote the event that a critical length meets customer
requirements.

Construct a Venn diagram that includes these events. Shade

the areas that represent the following:

(a) 4 (b) ANB

(¢ A/UB (d) AUB

(e) If these events were mutually exclusive, how successful
would this production operation be? Would the process
produce parts with X = 50 centimeters and ¥ = 10
centimeters?

2-23.

tions channel. Each bit is either distorted or received without

distortion. Let 4; denote the event that the ith bit is distorted,

i=1,..,4.

(a) Describe the sample space for this experiment.

(b) Are the 4,’s mutually exclusive?

Describe the outcomes in each of the following events:

(© 4 (d) 4,

(e) 4) N A, NA; N Ay (£) (41 N4y U (43N Ay)

2-24. A sample of three calculators is selected from a manu-

facturing line, and each calculator is classified as either defective

or acceptable. Let 4, B, and C denote the events that the first,

second, and third calculators respectively, are defective.

(a) Describe the sample space for this experiment with a tree
diagram.

Use the tree diagram to describe each of the following

events:

Four bits are transmitted over a digital communica-

(b) 4 (c) B
(d A4NB (e) BUC
2-25. A wireless garage door opener has a code determined

by the up or down setting of 12 switches. How many out-
comes are in the sample space of possible codes?

2-26. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized below:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let 4 denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch



resistance. Determine the number of disks in 4 M B, A’, and
AUB.

2-27. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish
excellent good
surface excellent 80 2
finish good 10 8

(a) Let 4 denote the event that a sample has excellent surface
finish, and let B denote the event that a sample has excel-
lent edge finish. Determine the number of samples in
A" N B,B',and A U B.

(b) Assume that each of two samples is to be classified on the
basis of surface finish, either excellent or good, edge finish,
either excellent or good. Use a tree diagram to represent the
possible outcomes of this experiment.

2-28. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results

from 100 samples are summarized as follows:

conforms
yes no
22 8
supplier 2 25 5
3 30 10

Let A4 denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
Determine the number of samples in 4’ M B, B’, and 4 U B.

2-29. The rise time of a reactor is measured in minutes (and
fractions of minutes). Let the sample space be positive, real
numbers. Define the events 4 and B as follows:

A= {x|x < 72.5}

and

B = {x|x > 525}

2-2 INTERPRETATIONS OF PROBABILITY
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Describe each of the following events:

(a) 4’ (b) B’

(¢c) ANB (d) AUB

2-30. A sample of two items is selected without replace-
ment from a batch. Describe the (ordered) sample space for
each of the following batches:

(a) The batch contains the items {a, b, c, d}.

(b) The batch contains the items {a, b, ¢, d, e, f, g}.

(c) The batch contains 4 defective items and 20 good items.
(d) The batch contains 1 defective item and 20 good items.

2-31. A sample of two printed circuit boards is selected
without replacement from a batch. Describe the (ordered)
sample space for each of the following batches:

(a) The batch contains 90 boards that are not defective, 8
boards with minor defects, and 2 boards with major
defects.

(b) The batch contains 90 boards that are not defective, 8
boards with minor defects, and 1 board with major
defects.

2-32. Counts of the Web pages provided by each of two

computer servers in a selected hour of the day are recorded.

Let A denote the event that at least 10 pages are provided by

server 1 and let B denote the event that at least 20 pages are

provided by server 2.

(a) Describe the sample space for the numbers of pages for
two servers graphically.

Show each of the following events on the sample space graph:

(b) 4 (c) B
(d ANB () AUB
2-33. The rise time of a reactor is measured in minutes

(and fractions of minutes). Let the sample space for the rise
time of each batch be positive, real numbers. Consider
the rise times of two batches. Let 4 denote the event that the
rise time of batch 1 is less than 72.5 minutes, and let B
denote the event that the rise time of batch 2 is greater than
52.5 minutes.

Describe the sample space for the rise time of two batches
graphically and show each of the following events on a two-
dimensional plot:

(a) 4 (b) B’
(¢c) ANB (d) AUB

In this chapter, we introduce probability for discrete sample spaces—those with only a finite
(or countably infinite) set of outcomes. The restriction to these sample spaces enables us to
simplify the concepts and the presentation without excessive mathematics.
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Figure 2-9 Relative
frequency of corrupted
pulses sent over a com-
munication channel.

/ Corrupted pulse

Time

Voltage

Relative frequency of corrupted pulse = 12—0

Probability is used to quantify the likelihood, or chance, that an outcome of a random
experiment will occur. “The chance of rain today is 30%” is a statement that quantifies our
feeling about the possibility of rain. The likelihood of an outcome is quantified by assigning a
number from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher num-
bers indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome
will not occur. A probability of 1 indicates an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or degree
of belief, that the outcome will occur. Different individuals will no doubt assign different
probabilities to the same outcomes. Another interpretation of probability is based on the con-
ceptual model of repeated replications of the random experiment. The probability of an
outcome is interpreted as the limiting value of the proportion of times the outcome occurs in
n repetitions of the random experiment as # increases beyond all bounds. For example, if we
assign probability 0.2 to the outcome that there is a corrupted pulse in a digital signal, we
might interpret this assignment as implying that, if we analyze many pulses, approximately
20% of them will be corrupted. This example provides a relative frequency interpretation of
probability. The proportion, or relative frequency, of replications of the experiment that result
in the outcome is 0.2. Probabilities are chosen so that the sum of the probabilities of all out-
comes in an experiment add up to 1. This convention facilitates the relative frequency inter-
pretation of probability. Figure 2-9 illustrates the concept of relative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable
model of the system under study. One approach is to base probability assignments on the sim-
ple concept of equally likely outcomes.

For example, suppose that we will select one laser diode randomly from a batch of 100.
The sample space is the set of 100 diodes. Randomly implies that it is reasonable to assume
that each diode in the batch has an equal chance of being selected. Because the sum of the
probabilities must equal 1, the probability model for this experiment assigns probability of
0.01 to each of the 100 outcomes. We can interpret the probability by imagining many repli-
cations of the experiment. Each time we start with all 100 diodes and select one at random.
The probability 0.01 assigned to a particular diode represents the proportion of replicates in
which a particular diode is selected.

When the model of equally likely outcomes is assumed, the probabilities are chosen to
be equal.

Whenever a sample space consists of N possible outcomes that are equally likely, the
probability of each outcome is 1/N.




Figure 2-10
Probability of the
event £ is the sum of
the probabilities of the
outcomes in E.

EXAMPLE 2-9

Definition

EXAMPLE 2-10
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E—_. .
\E\ \\ Diodes

P(E) =30(0.01) =0.30

It is frequently necessary to assign probabilities to events that are composed of several
outcomes from the sample space. This is straightforward for a discrete sample space.

Assume that 30% of the laser diodes in a batch of 100 meet the minimum power requirements
of a specific customer. If a laser diode is selected randomly, that is, each laser diode is equally
likely to be selected, our intuitive feeling is that the probability of meeting the customer’s
requirements is 0.30.

Let E denote the subset of 30 diodes that meet the customer’s requirements. Because
E contains 30 outcomes and each outcome has probability 0.01, we conclude that the prob-
ability of £ is 0.3. The conclusion matches our intuition. Figure 2-10 illustrates this
example.

For a discrete sample space, the probability of an event can be defined by the reasoning
used in the example above.

For a discrete sample space, the probability of an event E, denoted as P(E), equals the
sum of the probabilities of the outcomes in E.

A random experiment can result in one of the outcomes {a, b, ¢, d} with probabilities 0.1, 0.3,
0.5, and 0.1, respectively. Let A denote the event {a, b}, B the event {b, c, d}, and C the event
{d}.Then,

P(4)=0.1 +03=04

P(B) =03+ 05+0.1=09

P(C) = 0.1
Also, P(4") = 0.6, P(B') = 0.1, and P(C") = 0.9. Furthermore, because 4 N B = {b},

P(ANB)=03. Because 4 UB = {a,b,c,d}, PAUB)=10.1 + 03+ 05+ 0.1 =1.
Because 4 N C is the null set, P(4 N C) = 0.
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EXAMPLE 2-11

EXAMPLE 2-12

A visual inspection of a location on wafers from a semiconductor manufacturing process re-
sulted in the following table:

Number of
Contamination
Particles Proportion of Wafers
0 0.40
1 0.20
2 0.15
3 0.10
4 0.05
5 or more 0.10

If one wafer is selected randomly from this process and the location is inspected, what is the
probability that it contains no particles? If information were available for each wafer, we could
define the sample space as the set of all wafers inspected and proceed as in the example with
diodes. However, this level of detail is not needed in this case. We can consider the sample space
to consist of the six categories that summarize the number of contamination particles on a wafer.
Then, the event that there is no particle in the inspected location on the wafer, denoted as E, can
be considered to be comprised of the single outcome, namely, £ = {0}. Therefore,

P(E) = 04

What is the probability that a wafer contains three or more particles in the inspected
location? Let E denote the event that a wafer contains three or more particles in the inspected
location. Then, E consists of the three outcomes {3, 4, 5 or more}. Therefore,

P(E) = 0.10 + 0.05 + 0.10 = 0.25

Suppose that a batch contains six parts with part numbers {a, b, ¢, d, e, f}. Suppose that two
parts are selected without replacement. Let £ denote the event that the part number of the first
part selected is a. Then E can be written as £ = {ab, ac, ad, ae, af }. The sample space can be
enumerated. It has 30 outcomes. If each outcome is equally likely, P(E) = 5/30 = 1/6.

Also, if E, denotes the event that the second part selected is a, E, = {ba, ca, da, ea, fa}
and with equally likely outcomes, P(E,) = 5/30 = 1/6.

2-2.2 Axioms of Probability

Now that the probability of an event has been defined, we can collect the assumptions that we
have made concerning probabilities into a set of axioms that the probabilities in any random
experiment must satisfy. The axioms ensure that the probabilities assigned in an experiment
can be interpreted as relative frequencies and that the assignments are consistent with our
intuitive understanding of relationships between relative frequencies. For example, if event 4
is contained in event B, we should have P(4) = P(B). The axioms do not determine
probabilities; the probabilities are assigned based on our knowledge of the system under
study. However, the axioms enable us to easily calculate the probabilities of some events from
knowledge of the probabilities of other events.
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Axioms of
Probability

(1 PS) =1
2 0=PE)=1

Probability is a number that is assigned to each member of a collection of events
from a random experiment that satisfies the following properties:
If S is the sample space and E is any event in a random experiment,

(3) For two events E; and E, with £, N E, = &

P(E)UE,) = P(E,) + P(E,)

The property that 0 =< P(E) =< 1 is equivalent to the requirement that a relative frequency
must be between 0 and 1. The property that P(S) = 1 is a consequence of the fact that an
outcome from the sample space occurs on every trial of an experiment. Consequently, the rel-
ative frequency of S is 1. Property 3 implies that if the events £, and E, have no outcomes in
common, the relative frequency of outcomes in £; U E, is the sum of the relative frequencies
of the outcomes in £, and E,.

These axioms imply the following results. The derivations are left as exercises at the end
of this section. Now,

and for any event £,

For example, if the probability of the event E is 0.4, our interpretation of relative
frequency implies that the probability of £’ is 0.6. Furthermore, if the event £, is contained

in the event E,,

EXERCISES FOR SECTION 2-2

P(E)) = P(E,)

2-34. Each of the possible five outcomes of a random ex-
periment is equally likely. The sample space is {a, b, c, d, e}.
Let 4 denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:

(a) P(4) (b) P(B)

(c) P(4") (d) P(4U B)

(e) P(4 N B)

2-35. The sample space of a random experiment is {a, b, c,

d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.
Let 4 denote the event {a, b, c}, and let B denote the event
{c, d, e}. Determine the following:

(a) P(A) (b) P(B)

(c) P(4") (d) P4 U B)

(e) P(4 N B)

2-36. A part selected for testing is equally likely to have

been produced on any one of six cutting tools.

(a) What is the sample space?

(b) What is the probability that the part is from tool 1?

(c) What is the probability that the part is from tool 3 or
tool 5?

(d) What is the probability that the part is not from tool 4?

2-37. An injection-molded part is equally likely to be ob-

tained from any one of the eight cavities on a mold.

(a) What is the sample space?

(b) What is the probability a part is from cavity 1 or 2?

(c) What is the probability that a part is neither from cavity 3
nor 4?
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2-38. A sample space contains 20 equally likely outcomes.
If the probability of event 4 is 0.3, how many outcomes are in
event 4?

2-39. Orders for a computer are summarized by the op-
tional features that are requested as follows:

proportion of orders

no optional features 0.3
one optional feature 0.5
more than one optional feature 0.2

(a) What is the probability that an order requests at least one
optional feature?

(b) What is the probability that an order does not request
more than one optional feature?

2-40. If the last digit of a weight measurement is equally
likely to be any of the digits 0 through 9,

(a) What is the probability that the last digit is 0?

(b) What is the probability that the last digit is greater than or
equal to 57

2-41. A sample preparation for a chemical measurement is

completed correctly by 25% of the lab technicians, completed

with a minor error by 70%, and completed with a major error

by 5%.

(a) Ifatechnician is selected randomly to complete the prepa-
ration, what is the probability it is completed without
error?

(b) What is the probability that it is completed with either a
minor or a major error?

2-42. A credit card contains 16 digits between 0 and 9.
However, only 100 million numbers are valid. If a number is
entered randomly, what is the probability that it is a valid
number?

2-43. Suppose your vehicle is licensed in a state that issues
license plates that consist of three digits (between 0 and 9) fol-
lowed by three letters (between 4 and Z). If a license number
is selected randomly, what is the probability that yours is the
one selected?

2-44. A message can follow different paths through
servers on a network. The senders message can go to one of
five servers for the first step, each of them can send to five
servers at the second step, each of which can send to four
servers at the third step, and then the message goes to the re-
cipients server.

(a) How many paths are possible?

(b) Ifall paths are equally likely, what is the probability that a
message passes through the first of four servers at the
third step?

2-45. Disks of polycarbonate plastic from a supplier are an-

alyzed for scratch and shock resistance. The results from 100

disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. If a disk is selected at random, determine the following
probabilities:

(a) P(4) (b) P(B)

(c) P(A') (d) P(4 N B)

(e) P(AUB) (f) P(4'UB)

2-46. Samples of a cast aluminum part are classified on the

basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish
excellent good
surface excellent 80 2
finish good 10 8

Let 4 denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. If a part is selected at random, determine the following
probabilities:

(a) P(4) (b) P(B)

(c) P(A') (d) P(4 N B)

(e) P(AUB) (f) P(4'UB)

2-47. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms
yes no
22
supplier 2 25 5
3 30 10

Let 4 denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
If a sample is selected at random, determine the following
probabilities:

(a) P(4) (b) P(B)
(c) P(4') (d) P(ANB)
(e) P(AUB) (f) P(4' UB)

2-48. Use the axioms of probability to show the following:
(a) Forany event E, P(E') = 1 — P(E).

(b) P() =0

(c) If A is contained in B, then P(4) = P(B)
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2-3 ADDITION RULES

EXAMPLE 2-13

EXAMPLE 2-14

Joint events are generated by applying basic set operations to individual events. Unions of events,
such as 4 U B; intersections of events, such as 4 M B; and complements of events, such as 4,
are commonly of interest. The probability of a joint event can often be determined from the prob-
abilities of the individual events that comprise it. Basic set operations are also sometimes helpful
in determining the probability of a joint event. In this section the focus is on unions of events.

Table 2-1 lists the history of 940 wafers in a semiconductor manufacturing process. Suppose
one wafer is selected at random. Let H denote the event that the wafer contains high levels of
contamination. Then, P(H) = 358/940.

Let C denote the event that the wafer is in the center of a sputtering tool. Then,
P(C) = 626/940. Also, P(H N C) is the probability that the wafer is from the center of the sput-
tering tool and contains high levels of contamination. Therefore,

P(H N C) = 112/940

The event H U C is the event that a wafer is from the center of the sputtering tool or
contains high levels of contamination (or both). From the table, P(H U C) = 872/940. An
alternative calculation of P(H U C) can be obtained as follows. The 112 wafers that comprise
the event H M C are included once in the calculation of P(H) and again in the calculation of
P(C). Therefore, P(H U C) can be found to be

P(H U C) = P(H) + P(C) — P(HN C)
= 358/940 + 626/940 — 112/940 = 872/940

The preceding example illustrates that the probability of 4 or B is interpreted as P(4 U B)
and that the following general addition rule applies.

P(4 UB) = P(4) + P(B) — P(4 N B) 2-1)

The wafers such as those described in Example 2-13 were further classified as either in the
“center” or at the “edge” of the sputtering tool that was used in manufacturing, and by the
degree of contamination. Table 2-2 shows the proportion of wafers in each category. What is

Table 2-1 Wafers in Semiconductor Manufacturing Classified
by Contamination and Location

Location in Sputtering Tool

Contamination Center Edge Total
Low 514 68 582
High 112 246 358

Total 626 314
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Table 2-2 Wafers Classified by Contamination and Location

Number of
Contamination
Particles Center Edge Totals
0 0.30 0.10 0.40
1 0.15 0.05 0.20
2 0.10 0.05 0.15
3 0.06 0.04 0.10
4 0.04 0.01 0.05
5 or more 0.07 0.03 0.10
Totals 0.72 0.28 1.00

the probability that a wafer was either at the edge or that it contains four or more particles? Let
E, denote the event that a wafer contains four or more particles, and let £, denote the event
that a wafer is at the edge.

The requested probability is P(E; U E,). Now, P(E;) = 0.15 and P(E,) = 0.28. Also,
from the table, P(E, N E,) = 0.04 . Therefore, using Equation 2-1, we find that

P(E,UE,)=0.15+ 028 — 0.04 = 0.39

What is the probability that a wafer contains less than two particles or that it is both at the
edge and contains more than four particles? Let E; denote the event that a wafer contains less
than two particles, and let £, denote the event that a wafer is both from the edge and contains
more than four particles. The requested probability is P(E, U E,). Now, P(E;) = 0.60 and
P(E,) = 0.03. Also, E, and E, are mutually exclusive. Consequently, there are no wafers in
the intersection and P(E; M E,) = 0. Therefore,

P(E, UE,) =0.60 + 0.03 = 0.63
Recall that two events 4 and B are said to be mutually exclusive if 4 N B = . Then,

P(4 N B) = 0, and the general result for the probability of A U B simplifies to the third ax-
iom of probability.

If 4 and B are mutually exclusive events,

P(4 U B) = P(4) + P(B) (2-2)

Three or More Events
More complicated probabilities, such as P(4 U B U (), can be determined by repeated use
of Equation 2-1 and by using some basic set operations. For example,

P(AUBUC) = P[(4UB)UC] = P(4U B) + P(C) — P[(4UB) N C]



Figure 2-11  Venn
diagram of four mutu-
ally exclusive events.

EXAMPLE 2-15
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Upon expanding P(A U B) by Equation 2-1 and using the distributed rule for set opera-
tions to simplify P[(4 U B) N C], we obtain

P(AUBUC) = P(4) + P(B) — P(AN B) + P(C
— P(4) + P(B) — P(4 N B) + P(C
—[PANC)+PBNC)— PANBNC)]

_|_

) — P[(ANC)U (BN C)]
)

= P(4) + P(B) + P(C) — P(AN B) — P(A N C)
~P(BNC)+ P(ANBNC)

We have developed a formula for the probability of the union of three events. Formulas can be
developed for the probability of the union of any number of events, although the formulas
become very complex. As a summary, for the case of three events

P(AUBUC) = P(4) + P(B) + P(C) — P(4N B)
~PANC)—PBNC)+PANBNC) (2-3)

Results for three or more events simplify considerably if the events are mutually exclu-
sive. In general, a collection of events, E}, E,, ..., E;, is said to be mutually exclusive if there
is no overlap among any of them.

The Venn diagram for several mutually exclusive events is shown in Fig. 2-11. By gener-
alizing the reasoning for the union of two events, the following result can be obtained:

A collection of events, E, E», ..., E}, is said to be mutually exclusive if for all pairs,
For a collection of mutually exclusive events,

P(E\UE,U ... UE) = P(E)) + P(E,) + ... P(Ey) (2-4)

A simple example of mutually exclusive events will be used quite frequently. Let X denote the
pH of a sample. Consider the event that X is greater than 6.5 but less than or equal to 7.8. This
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probability is the sum of any collection of mutually exclusive events with union equal to the

same range for X. One example is

P(6.5<X=78)=P65<X=70)+P10<X=75)+P715<X=78)

Another example is

P65 <X =78) = P65 <X=66)+ P66 <X=171)

+P1<X=T74)+P74<X=78)

The best choice depends on the particular probabilities available.

EXERCISES FOR SECTION 2-3

2-49. 1If P(4) = 0.3, P(B) = 0.2, and P(4 N B) = 0.1,
determine the following probabilities:

(a) P(4") (b) P(4 U B)

(c) P(4' N B) (d) P(ANB")

(©) P{4UBY] () P(4'UB)

2-50. If A, B, and C are mutually exclusive events with

P(4) = 0.2, P(B) = 0.3,and P(C) = 0.4, determine the fol-
lowing probabilities:

(@) PAUBUC)  (b) PANBNC)

(c) P(AN B) (d) P[(AUB)NC]
(e) PA'NB ' NC)
2-51. If A, B, and C are mutually exclusive events, is it pos-

sible for P(4) = 0.3, P(B) = 0.4, and P(C) = 0.5? Why or
why not?

2-52. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

(a) Ifadisk is selected at random, what is the probability that
its scratch resistance is high and its shock resistance is
high?

(b) If a disk is selected at random, what is the probability
that its scratch resistance is high or its shock resistance
is high?

(c) Consider the event that a disk has high scratch resistance
and the event that a disk has high shock resistance. Are
these two events mutually exclusive?

2-53. The analysis of shafts for a compressor is summarized
by conformance to specifications.

roundness conforms

yes no
surface finish yes 345 5
conforms no 12

(a) Ifashaftis selected at random, what is the probability that
the shaft conforms to surface finish requirements?

(b) What is the probability that the selected shaft conforms
to surface finish requirements or to roundness require-
ments?

(c) What is the probability that the selected shaft either con-
forms to surface finish requirements or does not conform
to roundness requirements?

(d) What is the probability that the selected shaft conforms to
both surface finish and roundness requirements?

2-54. Cooking oil is produced in two main varieties: mono-
and polyunsaturated. Two common sources of cooking oil are
corn and canola. The following table shows the number of
bottles of these oils at a supermarket:

type of oil
canola corn
type of mono 7 13
unsaturation poly 93 77

(a) If a bottle of oil is selected at random, what is the proba-
bility that it belongs to the polyunsaturated category?

(b) What is the probability that the chosen bottle is monoun-
saturated canola oil?

2-55. A manufacturer of front lights for automobiles tests

lamps under a high humidity, high temperature environment

using intensity and useful life as the responses of interest. The

following table shows the performance of 130 lamps:

useful life

satisfactory unsatisfactory
intensity satisfactory 117 3
unsatisfactory 8 2
(a) Find the probability that a randomly selected lamp will
yield unsatisfactory results under any criteria.

(b) The customers for these lamps demand 95% satisfactory
results. Can the lamp manufacturer meet this demand?

2-56. The shafts in Exercise 2-53 are further classified in terms
of the machine tool that was used for manufacturing the shaft.
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surface finish
conforms

Tool 2

surface finish

conforms
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(a) Ifashaftis selected at random, what is the probability that
roundness conforms the shaft conforms to surface finish requirements or to
roundness requirements or is from Tool 1?

es no

;/OO { (b) Ifashaftis selected at random, what is the probability that
yes the shaft conforms to surface finish requirements or does
no 4 2

not conform to roundness requirements or is from Tool 2?
(c) Ifashaftis selected at random, what is the probability that
the shaft conforms to both surface finish and roundness

roundness conforms . .
requirements or the shaft is from Tool 2?

yes no (d) Ifashaftis selected at random, what is the probability that
yes 145 4 the shaft conforms to surface finish requirements or the
no 8 6 shaft is from Tool 2?

2-4 CONDITIONAL PROBABILITY

Figure 2-12
Conditional probabili-
ties for parts with
surface flaws.

A digital communication channel has an error rate of one bit per every thousand transmitted.
Errors are rare, but when they occur, they tend to occur in bursts that affect many consecutive
bits. If a single bit is transmitted, we might model the probability of an error as 1/1000.
However, if the previous bit was in error, because of the bursts, we might believe that the
probability that the next bit is in error is greater than 1/1000.

In a thin film manufacturing process, the proportion of parts that are not acceptable is 2%.
However, the process is sensitive to contamination problems that can increase the rate of parts
that are not acceptable. If we knew that during a particular shift there were problems with the
filters used to control contamination, we would assess the probability of a part being unac-
ceptable as higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% of the
parts with surface flaws are (functionally) defective parts. However, only 5% of parts without
surface flaws are defective parts. The probability of a defective part depends on our knowl-
edge of the presence or absence of a surface flaw.

These examples illustrate that probabilities need to be reevaluated as additional informa-
tion becomes available. The notation and details are further illustrated for this example.

Let D denote the event that a part is defective and let F' denote the event that a part has a
surface flaw. Then, we denote the probability of D given, or assuming, that a part has a sur-
face flaw as P(D|F). This notation is read as the conditional probability of D given F and it
is interpreted as the probability that a part is defective, given that the part has a surface flaw.
Because 25% of the parts with surface flaws are defective, our conclusion can be stated as
P(D|F) = 0.25. Furthermore, because F” denotes the event that a part does not have a surface
flaw and because 5% of the parts without surface flaws are defective, we have that
P(D|F") = 0.05. These results are shown graphically in Fig. 2-12.

P(D|F)=0.25
25% > 5% defective
defective { P(D|F’)=0.05
—— iy
F = parts with F’ = parts without
surface flaws surface flaws



38 CHAPTER 2 PROBABILITY

EXAMPLE 2-16

Definition

Table 2-3  Parts Classified

Surface Flaws
Yes (event F) No Total
Defective Yes (event D) 10 18 38
No 30 342 362
Total 40 360 400

Table 2-3 provides an example of 400 parts classified by surface flaws and as (functionally)
defective. For this table the conditional probabilities match those discussed previously in this
section. For example, of the parts with surface flaws (40 parts) the number defective is 10.
Therefore,

P(D|F) = 10/40 = 0.25
and of the parts without surface flaws (360 parts) the number defective is 18. Therefore,
P(D|F’) = 18/360 = 0.05

In Example 2-16 conditional probabilities were calculated directly. These probabilities
can also be determined from the formal definition of conditional probability.

The conditional probability of an event B given an event 4, denoted as P(B|A), is
P(B|A) = P(4 N B)/P(A) (2-5)

for P(4) > 0.

This definition can be understood in a special case in which all outcomes of a random exper-
iment are equally likely. If there are 7 total outcomes,

P(A) = (number of outcomes in 4)/n

Also,

P(A N B) = (number of outcomes in 4 N B)/n

Consequently,

P40 BY/P(A) = number of outcomes in 4 N B

number of outcomes in 4



Figure 2-13  Tree
diagram for parts
classified
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Surface flaw
0,

360 40
200 N° 78S 200
Defective —yo&—=—————-——-—-———————— —— o —
342 18 3 10
360 V Yes 360 20 ° Yes %0
L] (] L °

Therefore, P(B|A) can be interpreted as the relative frequency of event B among the trials that
produce an outcome in event 4.

Again consider the 400 parts in Table 2-3. From this table

10 /40 _ 10
P(DIF) = P(D N F)/P(F) = 355/ 206 = 20

Note that in this example all four of the following probabilities are different:

P(F) = 40/400
P(D) = 28/400

P(F|D) = 10/28
P(D|F) = 10/40

Here, P(D) and P(D|F) are probabilities of the same event, but they are computed under two
different states of knowledge. Similarly, P(F) and P(F|D) are computed under two different
states of knowledge.

The tree diagram in Fig. 2-13 can also be used to display conditional probabilities. The
first branch is on surface flaw. Of the 40 parts with surface flaws, 10 are functionally defec-
tive and 30 are not. Therefore,

P(D|F) =10/40 and  P(D'|F) = 30/40

Of the 360 parts without surface flaws, 18 are functionally defective and 342 are not. Therefore,

P(D|F") = 342/360  and  P(D'|F’) = 18/360

Random Samples from a Batch

Recall that to select one item randomly from a batch implies that each item is equally likely.
If more than one item is selected, randomly implies that each element of the sample space is
equally likely. For example, when sample spaces were presented earlier in this chapter, sam-
pling with and without replacement were defined and illustrated for the simple case of a batch
with three items {a, b, c}. If two items are selected randomly from this batch without replace-
ment, each of the six outcomes in the ordered sample space

Syithout = {ab, ac, ba, bc, ca, cb}

has probability 1/6. If the unordered sample space is used, each of the three outcomes in
{{a, b}, {a, c}, {b, c}} has probability 1/3.
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What is the conditional probability that b is selected second given that a is selected
first? Because this question considers the results of each pick, the ordered sample space is
used. The definition of conditional probability is applied as follows. Let £, denote the
event that the first item selected is @ and let £, denote the event that the second item se-
lected is b. Then,

E, = {ab, ac} and E, = {ab, cb} and  E,NE, = {ab}
and from the definition of conditional probability

176 _

13" 1/2

P(E,|E\) = P(E, N E,)/P(E;) =

When the sample space is larger, an alternative calculation is usually more convenient.
For example, suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If
two parts are selected randomly, without replacement, what is the conditional probability that
a part from tool 2 is selected second given that a part from tool 1 is selected first? There are
50 possible parts to select first and 49 to select second. Therefore, the (ordered) sample space
has 50 X 49 = 2450 outcomes. Let £, denote the event that the first part is from tool 1 and £,
denote the event that the second part is from tool 2. As above, a count of the number of out-
comes in £, and the intersection is needed.

Although the answer can be determined from this start, this type of question can be
answered more easily with the following result.

To select randomly implies that at each step of the sample, the items that remain in
the batch are equally likely to be selected.

If a part from tool 1 were selected with the first pick, 49 items would remain, 9 from tool 1 and
40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that
a part from tool 2 would be selected with the second pick given this first pick is

P(E,|E,) = 40/49.

In this manner, other probabilities can also be simplified. For example, let the event £
consist of the outcomes with the first selected part from tool 1 and the second part from tool 2.
To determine the probability of E, consider each step. The probability that a part from tool 1
is selected with the first pick is P(E;) = 10/50. The conditional probability that a part from
tool 2 is selected with the second pick, given that a part from tool 1 is selected first is
P(E,|E|) = 40/49. Therefore,

_ 40 10 _

P(E) = P(E,| E|)P(E)) = 29 30 0.163
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Sometimes a partition of the question into successive picks is an easier method to solve the
problem.

A day’s production of 850 manufactured parts contains 50 parts that do not meet customer
requirements. Two parts are selected randomly without replacement from the batch. What is
the probability that the second part is defective given that the first part is defective?

Let A denote the event that the first part selected is defective, and let B denote the event
that the second part selected is defective. The probability needed can be expressed as
P(B|A). If the first part is defective, prior to selecting the second part, the batch contains 849
parts, of which 49 are defective, therefore

P(B|A) = 49/849

Continuing the previous example, if three parts are selected at random, what is the probability
that the first two are defective and the third is not defective? This event can be described in
shorthand notation as simply P(ddn). We have

50 49 800
P = 2 0.0032
(ddn) = 250 " 849 "3ag ~ %003

The third term is obtained as follows. After the first two parts are selected, there are 848
remaining. Of the remaining parts, 800 are not defective. In this example, it is easy to obtain
the solution with a conditional probability for each selection.

EXERCISES FOR SECTION 2-4

2-57. Disks of polycarbonate plastic from a supplier are an- Let A denote the event that a sample has excellent surface fin-
alyzed for scratch and shock resistance. The results from 100 ish, and let B denote the event that a sample has excellent
disks are summarized as follows: length. Determine:
. (@ P(4)  (b) P(B)
shock resistance (c) P(4|B) (d) P(B|4)
high low (e) Ifthe selected part has excellent surface finish, what is the
scratch high 70 9 probability that the length is excellent?
resistance low 16 5 (f) If the selected part has good length, what is the probability
that the surface finish is excellent?

Let 4 denote the event that a disk has high shock resistance, 2-59. The analysis of shafts for a compressor is summarized
and let B denote the event that a disk has high scratch resist- by conformance to specifications:
ance. Determine the following probabilities:
(a) P(A) (b) P(B) roundness conforms
(c) P(4]B) (d) P(Bl4) yes no
2-58. Samples of a cast aluminum part are classified surface finish yes 345 5

on the basis of surface finish (in microinches) and length

conforms no 12

measurements. The results of 100 parts are summarized as

follows: (a) If we know that a shaft conforms to roundness require-
ments, what is the probability that it conforms to surface
length finish requirements?
excellent good (b) If we know that a shaft does not conform to roundness
surface excellent 80 2 requirements, what is the probability that it conforms to
finish good 10 3 surface finish requirements?
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2-60. The following table summarizes the analysis of samples
of galvanized steel for coating weight and surface roughness:

coating weight

high low
surface high 12 16
roughness low 88 34

(a) If'the coating weight of a sample is high, what is the prob-
ability that the surface roughness is high?

(b) If the surface roughness of a sample is high, what is the
probability that the coating weight is high?

(c) If the surface roughness of a sample is low, what is the
probability that the coating weight is low?

2-61. Consider the data on wafer contamination and loca-

tion in the sputtering tool shown in Table 2-2. Assume that one

wafer is selected at random from this set. Let 4 denote the

event that a wafer contains four or more particles, and let B

denote the event that a wafer is from the center of the sputter-

ing tool. Determine:

(a) P(4) (b) P(4]B)
(c) P(B) (d) P(B|4)
(e) PANB) (f) P(A4UB)

2-62. A lot of 100 semiconductor chips contains 20 that are

defective. Two are selected randomly, without replacement,

from the lot.

(a) What is the probability that the first one selected is defec-
tive?

(b) What is the probability that the second one selected is
defective given that the first one was defective?

(c) What is the probability that both are defective?

(d) How does the answer to part (b) change if chips selected
were replaced prior to the next selection?

2-63. A lotcontains 15 castings from a local supplier and 25

castings from a supplier in the next state. Two castings are

selected randomly, without replacement, from the lot of 40.

Let 4 be the event that the first casting selected is from the

local supplier, and let B denote the event that the second cast-

ing is selected from the local supplier. Determine:

(a) P(4) (b) P(B|4)

(c) P(ANB) (d) P(4UB)

2-64. Continuation of Exercise 2-63. Suppose three cast-

ings are selected at random, without replacement, from the lot

of 40. In addition to the definitions of events 4 and B, let C
denote the event that the third casting selected is from the
local supplier. Determine:

(a) PANBNC)

(b)y PANBNC)

2-65. A batch of 500 containers for frozen orange juice con-

tains 5 that are defective. Two are selected, at random, without

replacement from the batch.

(a) What is the probability that the second one selected is
defective given that the first one was defective?

(b) What is the probability that both are defective?

(c) What is the probability that both are acceptable?

2-66. Continuation of Exercise 2-65. Three containers are

selected, at random, without replacement, from the batch.

(a) What is the probability that the third one selected is defec-
tive given that the first and second one selected were
defective?

(b) What is the probability that the third one selected is
defective given that the first one selected was defective
and the second one selected was okay?

(c) What is the probability that all three are defective?

2-67. A maintenance firm has gathered the following infor-

mation regarding the failure mechanisms for air conditioning

systems:

evidence of gas leaks

yes no
evidence of yes 55 17
electrical failure no 32 3

The units without evidence of gas leaks or electrical failure

showed other types of failure. If this is a representative sample

of AC failure, find the probability

(a) That failure involves a gas leak

(b) That there is evidence of electrical failure given that there
was a gas leak

(c) That there is evidence of a gas leak given that there is
evidence of electrical failure

2-68. TfP(A|B) = 1, must 4 = B? Draw a Venn diagram to

explain your answer.

2-69. Suppose 4 and B are mutually exclusive events.

Construct a Venn diagram that contains the three events A4, B,
and C such that P(4|C) = 1 and P(B|C) = 0?

2-5 MULTIPLICATION AND TOTAL PROBABILITY RULES

2-5.1 Multiplication Rule

The definition of conditional probability in Equation 2-5 can be rewritten to provide a general
expression for the probability of the intersection of two events. This formula is referred to as
a multiplication rule for probabilities.



Multiplication Rule

EXAMPLE 2-20
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P(4 N B) = P(B|A)P(4) = P(4|B)P(B) (2-6)

The last expression in Equation 2-6 is obtained by interchanging 4 and B.

The probability that an automobile battery subject to high engine compartment temperature
suffers low charging current is 0.7. The probability that a battery is subject to high engine
compartment temperature is 0.05.

Let C denote the event that a battery suffers low charging current, and let 7" denote the
event that a battery is subject to high engine compartment temperature. The probability that a
battery is subject to low charging current and high engine compartment temperature is

P(CNT)=P(C|T)P(T) = 0.7 X 0.05 = 0.035

2-5.2 Total Probability Rule

The multiplication rule is useful for determining the probability of an event that depends on
other events. For example, suppose that in semiconductor manufacturing the probability is
0.10 that a chip that is subjected to high levels of contamination during manufacturing causes
a product failure. The probability is 0.005 that a chip that is not subjected to high contamina-
tion levels during manufacturing causes a product failure. In a particular production run, 20%
of the chips are subject to high levels of contamination. What is the probability that a product
using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high
levels of contamination. We can solve this problem by the following reasoning. For any event
B, we can write B as the union of the part of B in 4 and the part of B in 4. That is,

B=(4NB)U 4’ NB)

This result is shown in the Venn diagram in Fig. 2-14. Because 4 and A’ are mutually exclu-
sive, A M B and A’ M B are mutually exclusive. Therefore, from the probability of the union
of mutually exclusive events in Equation 2-2 and the Multiplication Rule in Equation 2-6, the
following total probability rule is obtained.

Figure 2-14  Partitioning B=(BNE)UBANE)UBNE3UBNE
an event into two mutually

. Figure 2-15  Partitioning an event into
exclusive subsets.

several mutually exclusive subsets.
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Total Probability
Rule (two events)

EXAMPLE 2-21

Total Probability
Rule (multiple
events)

EXAMPLE 2-22

For any events 4 and B,

P(B) = P(BNA) + P(BNA') = P(B|A)P(A) + P(B|A)P(4")  (2-7)

Consider the contamination discussion at the start of this section. Let F' denote the event
that the product fails, and let H denote the event that the chip is exposed to high levels of
contamination. The requested probability is P(F), and the information provided can be rep-
resented as

P(FIH)=10.10 and  P(F|H') = 0.005
P(H) = 0.20 and P(H") = 0.80

From Equation 2-7,
P(F) = 0.10(0.20) + 0.005(0.80) = 0.0235
which can be interpreted as just the weighted average of the two probabilities of failure.

The reasoning used to develop Equation 2-7 can be applied more generally. In the devel-
opment of Equation 2-7, we only used the two mutually exclusive 4 and 4’. However, the fact
that A U A" = S, the entire sample space, was important. In general, a collection of sets
E\,E,, ..., E; suchthat £, U E,U ... UE; = S is said to be exhaustive. A graphical dis-
play of partitioning an event B among a collection of mutually exclusive and exhaustive
events is shown in Fig. 2-15 on page 43.

Assume Ey, E,, ..., E; are k mutually exclusive and exhaustive sets. Then

P(B) = PBNE,) + PBNE,)) + - + P(BNEy)
= P(B|E\)P(E)) + P(BIE))P(E,y) + -+ + P(BIE)JP(E)  (2-8)

Continuing with the semiconductor manufacturing example, assume the following probabili-
ties for product failure subject to levels of contamination in manufacturing:

Probability of Failure Level of Contamination
0.10 High
0.01 Medium

0.001 Low
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Contamination
{1

0.20 0.50
0.30
High Medium Low
AN N\ AN
P(Fail|High) P(Not Fail |High) P(Fail|Medium)  P(Not Fail|Medium)  P(Fail|Low)  P(Not Fail|Low)
=0.10 =0.90 =0.01 =0.99 =0.001 =0.999
[} L] \. L} L]
0.10(0.20) 0.90(0.20) 0.01(0.30) 0.99(0.30)  0.001(0.50) 0.999(0.50)
=0.02 =0.18 =0.003 =0.297 =0.0005 =0.4995

Figure 2-16  Tree
diagram for
Example 2-22.

P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

In a particular production run, 20% of the chips are subjected to high levels of contami-
nation, 30% to medium levels of contamination, and 50% to low levels of contamination.
What is the probability that a product using one of these chips fails? Let

H denote the event that a chip is exposed to high levels of contamination

M denote the event that a chip is exposed to medium levels of contamination

L denote the event that a chip is exposed to low levels of contamination

Then,

P(F) = P(F|H)P(H) + P(F|M)P(M) + P(F[L)P(L)
= 0.10(0.20) + 0.01(0.30) + 0.001(0.50) = 0.0235

This problem is also conveniently solved using the tree diagram in Fig. 2-16.

EXERCISES FOR SECTION 2-5

2-70. Suppose that P(4|B) =04 and P(B)=0.5.
Determine the following:

(a) P(AN B)

(b) P(4' N B)

2-71. Suppose that P(A|B) =02, P(4|B') = 0.3, and
P(B) = 0.8. What is P(4)?

2-72. The probability is 1% that an electrical connector that
is kept dry fails during the warranty period of a portable com-
puter. If the connector is ever wet, the probability of a failure
during the warranty period is 5%. If 90% of the connectors are
kept dry and 10% are wet, what proportion of connectors fail
during the warranty period?

2-73. Suppose 2% of cotton fabric rolls and 3% of nylon
fabric rolls contain flaws. Of the rolls used by a manufacturer,
70% are cotton and 30% are nylon. What is the probability
that a randomly selected roll used by the manufacturer con-
tains flaws?

2-74. In the manufacturing of a chemical adhesive, 3% of
all batches have raw materials from two different lots. This
occurs when holding tanks are replenished and the remaining
portion of a lot is insufficient to fill the tanks.

Only 5% of batches with material from a single lot require
reprocessing. However, the viscosity of batches consisting of
two or more lots of material is more difficult to control, and
40% of such batches require additional processing to achieve
the required viscosity.

Let 4 denote the event that a batch is formed from
two different lots, and let B denote the event that a lot
requires additional processing. Determine the following
probabilities:

() P(4) (b) P(4")

(c) P(B|4) (d) P(B|4")
(e) P(ANB) (f) PANB)
(2) P(B)
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2-75. The edge roughness of slit paper products increases as
knife blades wear. Only 1% of products slit with new blades
have rough edges, 3% of products slit with blades of average
sharpness exhibit roughness, and 5% of products slit with
worn blades exhibit roughness. If 25% of the blades in manu-
facturing are new, 60% are of average sharpness, and 15% are
worn, what is the proportion of products that exhibit edge
roughness?
2-76. Samples of laboratory glass are in small, light pack-
aging or heavy, large packaging. Suppose that 2 and 1% of
the sample shipped in small and large packages, respec-
tively, break during transit. If 60% of the samples are
shipped in large packages and 40% are shipped in small
packages, what proportion of samples break during
shipment?
2-77. Incoming calls to a customer service center are classi-
fied as complaints (75% of call) or requests for information
(25% of calls). Of the complaints, 40% deal with computer
equipment that does not respond and 57% deal with
incomplete software installation; and in the remaining 3% of
complaints the user has improperly followed the installation
instructions. The requests for information are evenly divided
on technical questions (50%) and requests to purchase more
products (50%).
(a) What is the probability that an incoming call to the cus-
tomer service center will be from a customer who has not
followed installation instructions properly?

2-6 INDEPENDENCE

(b) Find the probability that an incoming call is a request for
purchasing more products.

2-78. Computer keyboard failures are due to faulty electri-
cal connects (12%) or mechanical defects (88%). Mechanical
defects are related to loose keys (27%) or improper assembly
(73%). Electrical connect defects are caused by defective
wires (35%), improper connections (13%), or poorly welded
wires (52%).

(a) Find the probability that a failure is due to loose keys.

(b) Find the probability that a failure is due to improperly

connected or poorly welded wires.

2-79. A batch of 25 injection-molded parts contains 5 that

have suffered excessive shrinkage.

(a) If two parts are selected at random, and without replace-
ment, what is the probability that the second part selected
is one with excessive shrinkage?

(b) Ifthree parts are selected at random, and without replace-
ment, what is the probability that the third part selected is
one with excessive shrinkage?

2-80. A lot of 100 semiconductor chips contains 20 that are

defective.

(a) Two are selected, at random, without replacement, from
the lot. Determine the probability that the second chip se-
lected is defective.

(b) Three are selected, at random, without replacement,
from the lot. Determine the probability that all are
defective.

In some cases, the conditional probability of P(B|A4) might equal P(B). In this special case,
knowledge that the outcome of the experiment is in event 4 does not affect the probability that

the outcome is in event B.

EXAMPLE 2-23

Suppose a day’s production of 850 manufactured parts contains 50 parts that do not meet

customer requirements. Suppose two parts are selected from the batch, but the first part is
replaced before the second part is selected. What is the probability that the second part is
defective (denoted as B) given that the first part is defective (denoted as 4)? The probability

needed can be expressed as P(B|A4).

Because the first part is replaced prior to selecting the second part, the batch still contains
850 parts, of which 50 are defective. Therefore, the probability of B does not depend on
whether or not the first part was defective. That is,

P(B]A4) = 50/850

Also, the probability that both parts are defective is

P(4 N B) = P(B|A)P(4) = ( >0 ) - (50> = 0.0035

850/ \ 850
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Table 2-4  Parts Classified

Surface Flaws
Yes (event F) No Total
Defective Yes (event D) 2 18 20
No 38 342 380
Total 40 360 400

EXAMPLE 2-24 The information in Table 2-3 related surface flaws to functionally defective parts. In that case,
we determined that P(D|F) = 10/40 = 0.25 and P(D) = 28/400 = 0.07. Suppose that the
situation is different and follows Table 2-4. Then,

P(D|F) =2/40 = 0.05 and  P(D) = 20/400 = 0.05

That is, the probability that the part is defective does not depend on whether it has surface
flaws. Also,

P(F|ID)=2/20=0.10 and  P(F) = 40/400 = 0.10

so the probability of a surface flaw does not depend on whether the part is defective.
Furthermore, the definition of conditional probability implies that

P(F N D) = P(D|F)P(F)
but in the special case of this problem

2 2 1
P(FND) = ADIP(F) = 45+ 56 =500

The preceding example illustrates the following conclusions. In the special case that
P(B|A) = P(B), we obtain

P(AN B) = P(B|A)P(4) = P(B)P(A)
and

_P(ANB) _ PAPB)
P(4|B) = PGB - PE) P(A4)

These conclusions lead to an important definition.

Definition
Two events are independent if any one of the following equivalent statements is true:
(1) P4lB) = P(4)
(2) P(Bl4) = P(B)
(3) P(4NB) = P(A)P(B) (2-9)
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EXAMPLE 2-25

Definition

EXAMPLE 2-26

It is left as a mind-expanding exercise to show that independence implies related results
such as

P(A' N B') = P(4")P(B").

The concept of independence is an important relationship between events and is used
throughout this text. A mutually exclusive relationship between two events is based only on
the outcomes that comprise the events. However, an independence relationship depends on the
probability model used for the random experiment. Often, independence is assumed to be part
of the random experiment that describes the physical system under study.

A day’s production of 850 manufactured parts contains 50 parts that do not meet customer
requirements. Two parts are selected at random, without replacement, from the batch. Let 4
denote the event that the first part is defective, and let B denote the event that the second part
is defective.

We suspect that these two events are not independent because knowledge that the first
part is defective suggests that it is less likely that the second part selected is defective. Indeed,
P(B|A) = 49/849. Now, what is P(B)? Finding the unconditional P(B) is somewhat difficult
because the possible values of the first selection need to be considered:

P(B) = P(B|A)P(4) + P(B|A")P(4")
= (49/849)(50/850) + (50/849)(800/850)
= 50/850

Interestingly, P(B), the unconditional probability that the second part selected is defec-
tive, without any knowledge of the first part, is the same as the probability that the first part
selected is defective. Yet, our goal is to assess independence. Because P(B|A4) does not equal
P(B), the two events are not independent, as we suspected.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E,, E,, ..., E, are independent if and only if for any subset of these
events £, , E; L E

i Hipp v et i

P(Eil mEl'z m m Eik) - P(Ell) X P(Elz) X oo X P(Elk) (2'10)

This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the ran-
dom experiment.

Assume that the probability that a wafer contains a large particle of contamination is 0.01 and
that the wafers are independent; that is, the probability that a wafer contains a large particle is
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EXAMPLE 2-28
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not dependent on the characteristics of any of the other wafers. If 15 wafers are analyzed, what
is the probability that no large particles are found?

Let E; denote the event that the ith wafer contains no large particles, i = 1,2, ..., 15.
Then, P(E;) = 0.99. The probability requested can be represented as P(E; N E, N -+ M E}s).
From the independence assumption and Equation 2-10,

P(E,NE,N - NEs) = P(E,) X P(E,) X -+~ X P(Eys) = 0.99"° = 0.86
The following circuit operates only if there is a path of functional devices from left to right.

The probability that each device functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

0.95

0.95

Let T'and B denote the events that the top and bottom devices operate, respectively. There
is a path if at least one device operates. The probability that the circuit operates is

P(TorB)=1—P[(TorB)'] =1— P(T" and B")

a simple formula for the solution can be derived from the complements 7" and B’. From the
independence assumption,

P(T' and B') = P(T")P(B') = (1 — 0.95)* = 0.05%
)
P(TorB) =1 — 0.05* = 0.9975
The following circuit operates only if there is a path of functional devices from left to right.

The probability that each device functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

0.95

0.99 b

[ ]
—

0.95
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The solution can be obtained from a partition of the graph into three columns.
The probability that there is a path of functional devices only through the three units on the
left can be determined from the independence in a manner similar to the previous example.

It is

1 -0.1°

Similarly, the probability that there is a path of functional devices only through the two units

in the middle is

1 — 0.05?

The probability that there is a path of functional devices only through the one unit on the right
is simply the probability that the device functions, namely, 0.99. Therefore, with the inde-
pendence assumption used again, the solution is

(1 = 0.1%)(1 — 0.05%)(0.99) = 0.987

EXERCISES FOR SECTION 2-6

2-81. If P(A|B) = 0.4, P(B) = 0.8, and P(4) = 0.5, are
the events 4 and B independent?

2-82. If P(4]B) = 0.3, P(B) = 0.8, and P(4) = 0.3, are
the events B and the complement of 4 independent?

2-83. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A4 denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. Are events 4 and B independent?

2-84. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and length measure-
ments. The results of 100 parts are summarized as follows:

length
excellent good
surface excellent 80 2
finish good 10 8

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. Are events 4 and B independent?

2-85. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms
yes no
1 22
supplier 2 25 5
3 30 10

Let 4 denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
(a) Are events 4 and B independent?

(b) Determine P(B|A).

2-86. If P(4) = 0.2, P(B) = 0.2, and 4 and B are mutually
exclusive, are they independent?

2-87. The probability that a lab specimen contains high lev-

els of contamination is 0.10. Five samples are checked, and

the samples are independent.

(a) What is the probability that none contains high levels of
contamination?

(b) What is the probability that exactly one contains high
levels of contamination?

(c) What is the probability that at least one contains high
levels of contamination?

2-88. Ina test of a printed circuit board using a random test

pattern, an array of 10 bits is equally likely to be 0 or 1.

Assume the bits are independent.

(a) What is the probability that all bits are 1s?

(b) What is the probability that all bits are 0s?

(c) What is the probability that exactly five bits are 1s and five
bits are 0s?

2-89. Eight cavities in an injection-molding tool produce
plastic connectors that fall into a common stream. A sample is



chosen every several minutes. Assume that the samples are

independent.

(a) What is the probability that five successive samples were
all produced in cavity one of the mold?

(b) What is the probability that five successive samples were
all produced in the same cavity of the mold?

(c) What is the probability that four out of five successive
samples were produced in cavity one of the mold?

2-90. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the prob-
ability that a device is functional does not depend on whether
or not other devices are functional. What is the probability that
the circuit operates?

0.9 0.8 0.7

0.95 0.95 0.95

2-91. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
each device functions is as shown. Assume that the probabil-
ity that a device functions does not depend on whether or not

2-7 BAYES’ THEOREM
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other devices are functional. What is the probability that the
circuit operates?

0.9 0.9 0.8

0.95 0.95 0.9

2-92. An optical storage device uses an error recovery proce-
dure that requires an immediate satisfactory readback of any
written data. If the readback is not successful after three writing
operations, that sector of the disk is eliminated as unacceptable
for data storage. On an acceptable portion of the disk, the proba-
bility of a satisfactory readback is 0.98. Assume the readbacks
are independent. What is the probability that an acceptable por-
tion of the disk is eliminated as unacceptable for data storage?
2-93. A batch of 500 containers for frozen orange juice con-
tains 5 that are defective. Two are selected, at random, without
replacement, from the batch. Let 4 and B denote the events
that the first and second container selected is defective, re-
spectively.

(a) Are A and B independent events?

(b) If the sampling were done with replacement, would 4 and

B be independent?

In some examples, we do not have a complete table of information such as the parts in Table
2-3. We might know one conditional probability but would like to calculate a different one. In
the semiconductor contamination problem in Example 2-22, we might ask the following: If
the semiconductor chip in the product fails, what is the probability that the chip was exposed

to high levels of contamination?

From the definition of conditional probability,

P(4 N B) = P(4|B)P(B) = P(B N A) = P(B|4)P(4)

Now considering the second and last terms in the expression above, we can write

P(A|B)

P(B|A)P(4)

for P(B) >0 2-11)

P(B)

This is a useful result that enables us to solve for P(4|B) in terms of P(B| 4).
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EXAMPLE 2-29

Bayes’
Theorem

EXAMPLE 2-30

We can answer the question posed at the start of this section as follows: The probability
requested can be expressed as P(H | F). Then,

P(F|H)P(H)  0.10(0.20)
P(F)  0.0235

P(H|F) =

The value of P(F) in the denominator of our solution was found in Example 2-20.

In general, if P(B) in the denominator of Equation 2-11 is written using the Total
Probability Rule in Equation 2-8, we obtain the following general result, which is known as
Bayes’ Theorem.

IfEy, E,, ..., E;are k mutually exclusive and exhaustive events and B is any
event,

P(B|E\)P(E))
(BIE)P(E) + P(B|E)P(E,) + -+ + P(B|E)P(Ey)

P(E||B) = 5 (2-12)

for P(B) > 0

Because a new medical procedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The probability that the test cor-
rectly identifies someone with the illness as positive is 0.99, and the probability that the test
correctly identifies someone without the illness as negative is 0.95. The incidence of the
illness in the general population is 0.0001. You take the test, and the result is positive. What is
the probability that you have the illness?

Let D denote the event that you have the illness, and let § denote the event that the test
signals positive. The probability requested can be denoted as P(D|S). The probability that the
test correctly signals someone without the illness as negative is 0.95. Consequently, the prob-
ability of a positive test without the illness is

P(S|D") = 0.05
From Bayes’ Theorem,

P(D|S) = P(S|D)P(D)/[P(S|D)P(D) + P(S|D")P(D'")]
0.99(0.0001)/[0.99(0.0001) + 0.05(1 — 0.0001)]
1/506 = 0.002

Surprisingly, even though the test is effective, in the sense that P(S|D) is high and
P(S|D’) is low, because the incidence of the illness in the general population is low, the
chances are quite small that you actually have the disease even if the test is positive.
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2-94. Suppose that P(4|B)=0.7, P(4) =0.5, and
P(B) = 0.2. Determine P(B|A).

2-95. Software to detect fraud in consumer phone cards
tracks the number of metropolitan areas where calls origi-
nate each day. It is found that 1% of the legitimate users
originate calls from two or more metropolitan areas in a
single day. However, 30% of fraudulent users originate
calls from two or more metropolitan areas in a single day.
The proportion of fraudulent users is 0.01%. If the
same user originates calls from two or more metropolitan
areas in a single day, what is the probability that the user is
fraudulent?

2-96. Semiconductor lasers used in optical storage products
require higher power levels for write operations than for read
operations. High-power-level operations lower the useful life
of the laser.

Lasers in products used for backup of higher speed mag-
netic disks primarily write, and the probability that the useful
life exceeds five years is 0.95. Lasers that are in products that
are used for main storage spend approximately an equal
amount of time reading and writing, and the probability that
the useful life exceeds five years is 0.995. Now, 25% of the
products from a manufacturer are used for backup and 75% of
the products are used for main storage.

Let 4 denote the event that a laser’s useful life exceeds five
years, and let B denote the event that a laser is in a product that
is used for backup.

Use a tree diagram to determine the following:

(a) P(B) (b) P(4]B)
(©) P(4|B) (@) PANB)
(e) PANB) (f) P4)

(g) What is the probability that the useful life of a laser
exceeds five years?

(h) What is the probability that a laser that failed before five
years came from a product used for backup?

2-97. Customers are used to evaluate preliminary product

designs. In the past, 95% of highly successful products

received good reviews, 60% of moderately successful prod-
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ucts received good reviews, and 10% of poor products

received good reviews. In addition, 40% of products have

been highly successful, 35% have been moderately

successful, and 25% have been poor products.

(a) What is the probability that a product attains a good
review?

(b) If a new design attains a good review, what is the proba-
bility that it will be a highly successful product?

(c) If a product does not attain a good review, what is the
probability that it will be a highly successful product?

2-98. An inspector working for a manufacturing company

has a 99% chance of correctly identifying defective items and

a 0.5% chance of incorrectly classifying a good item as defec-

tive. The company has evidence that its line produces 0.9% of

nonconforming items.

(a) What is the probability that an item selected for inspection
is classified as defective?

(b) If an item selected at random is classified as nondefective,
what is the probability that it is indeed good?

2-99. A new analytical method to detect pollutants in water
is being tested. This new method of chemical analysis is im-
portant because, if adopted, it could be used to detect three dif-
ferent contaminants—organic pollutants, volatile solvents,
and chlorinated compounds—instead of having to use a single
test for each pollutant. The makers of the test claim that it can
detect high levels of organic pollutants with 99.7% accuracy,
volatile solvents with 99.95% accuracy, and chlorinated com-
pounds with 89.7% accuracy. If a pollutant is not present, the
test does not signal. Samples are prepared for the calibration
of the test and 60% of them are contaminated with organic
pollutants, 27% with volatile solvents, and 13% with traces of
chlorinated compounds.
A test sample is selected randomly.
(a) What is the probability that the test will signal?
(b) If the test signals, what is the probability that chlori-
nated compounds are present?

We often summarize the outcome from a random experiment by a simple number. In many
of the examples of random experiments that we have considered, the sample space has
been a description of possible outcomes. In some cases, descriptions of outcomes are suf-
ficient, but in other cases, it is useful to associate a number with each outcome in the sam-
ple space. Because the particular outcome of the experiment is not known in advance, the
resulting value of our variable is not known in advance. For this reason, the variable that
associates a number with the outcome of a random experiment is referred to as a random

variable.
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Definition

Definition

Examples of
Random
Variables

A random variable is a function that assigns a real number to each outcome in the
sample space of a random experiment.

A random variable is denoted by an uppercase letter such as X. After an experi-
ment is conducted, the measured value of the random variable is denoted by a low-
ercase letter such as x = 70 milliamperes.

Sometimes a measurement (such as current in a copper wire or length of a machined part)
can assume any value in an interval of real numbers (at least theoretically). Then arbitrary pre-
cision in the measurement is possible. Of course, in practice, we might round off to the nearest
tenth or hundredth of a unit. The random variable that represents this measurement is said to
be a continuous random variable. The range of the random variable includes all values in an
interval of real numbers; that is, the range can be thought of as a continuum.

In other experiments, we might record a count such as the number of transmitted bits that
are received in error. Then the measurement is limited to integers. Or we might record that a
proportion such as 0.0042 of the 10,000 transmitted bits were received in error. Then the
measurement is fractional, but it is still limited to discrete points on the real line. Whenever
the measurement is limited to discrete points on the real line, the random variable is said to be
a discrete random variable.

A discrete random variable is a random variable with a finite (or countably infinite)
range.

A continuous random variable is a random variable with an interval (either finite or
infinite) of real numbers for its range.

In some cases, the random variable X is actually discrete but, because the range of possible
values is so large, it might be more convenient to analyze X as a continuous random variable. For
example, suppose that current measurements are read from a digital instrument that displays the
current to the nearest one-hundredth of a milliampere. Because the possible measurements are
limited, the random variable is discrete. However, it might be a more convenient, simple approx-
imation to assume that the current measurements are values of a continuous random variable.

Examples of continuous random variables:
electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:
number of scratches on a surface, proportion of defective parts among 1000
tested, number of transmitted bits received in error.

EXERCISES FOR SECTION 2-8

2-100. Decide whether a discrete or continuous random (b) The number of times a transistor in a computer memory
variable is the best model for each of the following vari- changes state in one operation.
ables: (c) The volume of gasoline that is lost to evaporation during

(a) The time until a projectile returns to earth. the filling of a gas tank.



(d) The outside diameter of a machined shaft.

(e) The number of cracks exceeding one-half inch in 10 miles
of an interstate highway.

(f) The weight of an injection-molded plastic part.

(g) The number of molecules in a sample of gas.

(h) The concentration of output from a reactor.

(i) The current in an electronic circuit.

Supplemental Exercises

2-101. In circuit testing of printed circuit boards, each
board either fails or does not fail the test. A board that fails the
test is then checked further to determine which one of five de-
fect types is the primary failure mode. Represent the sample
space for this experiment.

2-102. The data from 200 machined parts are summarized
as follows:

depth of bore
above below
edge condition target target
coarse 15 10
moderate 25 20
smooth 50 80

(a) What is the probability that a part selected has a moderate
edge condition and a below-target bore depth?

(b) What is the probability that a part selected has a moderate
edge condition or a below-target bore depth?

(c) What is the probability that a part selected does not have a
moderate edge condition or does not have a below-target
bore depth?

(d) Construct a Venn diagram representation of the events in
this sample space.

2-103. Computers in a shipment of 100 units contain a
portable hard drive, CD RW drive, or both according to the
following table:

portable hard drive

yes no
CD RW
yes 15 80
no 4 1

Let 4 denote the events that a computer has a portable hard
drive and let B denote the event that a computer has a CD RW
drive. If one computer is selected randomly, compute

(a) P(4) (b) P(ANB)
(c) PAUB) (d) P(4' N B)
(e) P(4|B)

2-104. The probability that a customer’s order is not
shipped on time is 0.05. A particular customer places three
orders, and the orders are placed far enough apart in time that
they can be considered to be independent events.
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(a) What is the probability that all are shipped on time?

(b) What is the probability that exactly one is not shipped on
time?

(c) What is the probability that two or more orders are not
shipped on time?

2-105. Let E,, E,, and E; denote the samples that conform

to a percentage of solids specification, a molecular weight

specification, and a color specification, respectively. A total of

240 samples are classified by the E,, E,, and E; specifications,

where yes indicates that the sample conforms.

E5 yes
E,
yes no Total
E, yes 200 1 201
no 5 4 9
Total 205 5 210
E;no
E,
yes no
E, yes 20 4 24
no 6 0 6
Total 26 4 30

(a) Are E,, E,, and E; mutually exclusive events?

(b) Are E'}, E',, and E'; mutually exclusive events?

(c) What is P(E', or E', or E'5)?

(d) What is the probability that a sample conforms to all three
specifications?

(e) What is the probability that a sample conforms to the £, or
Ej5 specification?

(f) What is the probability that a sample conforms to the £, or
E, or E; specification?

2-106. Transactions to a computer database are either new

items or changes to previous items. The addition of an item can

be completed less than 100 milliseconds 90% of the time, but

only 20% of changes to a previous item can be completed in

less than this time. If 30% of transactions are changes, what is

the probability that a transaction can be completed in less than

100 milliseconds?

2-107. A steel plate contains 20 bolts. Assume that 5 bolts

are not torqued to the proper limit. Four bolts are selected at

random, without replacement, to be checked for torque.

(a) What is the probability that all four of the selected bolts
are torqued to the proper limit?

(b) What is the probability that at least one of the selected
bolts is not torqued to the proper limit?

2-108. The following circuit operates if and only if there is

a path of functional devices from left to right. Assume devices

fail independently and that the probability of failure of each
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device is as shown. What is the probability that the circuit
operates?

0.01 —— 0.01 0.1

0.1 0.1

2-109. The probability of getting through by telephone to
buy concert tickets is 0.92. For the same event, the probability
of accessing the vendor’s Web site is 0.95. Assume that these
two ways to buy tickets are independent. What is the proba-
bility that someone who tries to buy tickets through the
Internet and by phone will obtain tickets?

2-110. The British government has stepped up its information
campaign regarding foot and mouth disease by mailing
brochures to farmers around the country. It is estimated that 99%
of Scottish farmers who receive the brochure possess enough in-
formation to deal with an outbreak of the disease, but only 90%
of those without the brochure can deal with an outbreak. After
the first three months of mailing, 95% of the farmers in
Scotland received the informative brochure. Compute the prob-
ability that a randomly selected farmer will have enough infor-
mation to deal effectively with an outbreak of the disease.

2-111. In an automated filling operation, the probability of

an incorrect fill when the process is operated at a low speed is

0.001. When the process is operated at a high speed, the prob-

ability of an incorrect fill is 0.01. Assume that 30% of the

containers are filled when the process is operated at a high
speed and the remainder are filled when the process is
operated at a low speed.

(a) What is the probability of an incorrectly filled container?
(b) Ifan incorrectly filled container is found, what is the proba-
bility that it was filled during the high-speed operation?
2-112. An encryption-decryption system consists of three
elements: encode, transmit, and decode. A faulty encode
occurs in 0.5% of the messages processed, transmission errors
occur in 1% of the messages, and a decode error occurs in

0.1% of the messages. Assume the errors are independent.

(a) What is the probability of a completely defect-free
message?

(b) What is the probability of a message that has either an
encode or a decode error?

2-113. It is known that two defective copies of a commercial

software program were erroneously sent to a shipping lot that

has now a total of 75 copies of the program. A sample of copies
will be selected from the lot without replacement.

(a) Ifthree copies of the software are inspected, determine the
probability that exactly one of the defective copies will be
found.

(b) Ifthree copies of the software are inspected, determine the
probability that both defective copies will be found.

(c) If 73 copies are inspected, determine the probability that
both copies will be found. Hint: Work with the copies that
remain in the lot.

2-114. A robotic insertion tool contains 10 primary compo-
nents. The probability that any component fails during the
warranty period is 0.01. Assume that the components fail
independently and that the tool fails if any component fails.
What is the probability that the tool fails during the warranty
period?

2-115. An e-mail message can travel through one of two
server routes. The probability of transmission error in each of
the servers and the proportion of messages that travel each
route are shown in the following table. Assume that the
servers are independent.

probability of error

percentage

of messages server 1 server2 server3 server 4
route 1 30 0.01 0.015
route 2 70 0.02 0.003

(a) What is the probability that a message will arrive without
error?

(b) If a message arrives in error, what is the probability it was
sent through route 1?

2-116. A machine tool is idle 15% of the time. You request

immediate use of the tool on five different occasions during

the year. Assume that your requests represent independent

events.

(a) What is the probability that the tool is idle at the time of all
of your requests?

(b) What is the probability that the machine is idle at the time
of exactly four of your requests?

(c) What is the probability that the tool is idle at the time of at
least three of your requests?

2-117. Alot of 50 spacing washers contains 30 washers that

are thicker than the target dimension. Suppose that three wash-

ers are selected at random, without replacement, from the lot.

(a) What is the probability that all three washers are thicker
than the target?

(b) What is the probability that the third washer selected is
thicker than the target if the first two washers selected are
thinner than the target?

(c) What is the probability that the third washer selected is
thicker than the target?

2-118. Continuation of Exercise 2-117. Washers are se-

lected from the lot at random, without replacement.

(a) What is the minimum number of washers that need to be
selected so that the probability that all the washers are
thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to be
selected so that the probability that one or more washers
are thicker than the target is at least 0.90?



2-119. The following table lists the history of 940 orders for
features in an entry-level computer product.

extra memory

no yes
optional high- no 514 68
speed processor  yes 112 246

Let 4 be the event that an order requests the optional high-
speed processor, and let B be the event that an order requests
extra memory. Determine the following probabilities:

(a) P(AUB) (b) P(ANB)

(c) P(A"UB) (d) P(4'NB")

(e) What is the probability that an order requests an optional
high-speed processor given that the order requests extra
memory?

(f) What is the probability that an order requests extra mem-
ory given that the order requests an optional high-speed
processor?

2-120. The alignment between the magnetic tape and head

in a magnetic tape storage system affects the performance of

the system. Suppose that 10% of the read operations are de-
graded by skewed alignments, 5% of the read operations are
degraded by off-center alignments, and the remaining read op-
erations are properly aligned. The probability of a read error is

0.01 from a skewed alignment, 0.02 from an off-center align-

ment, and 0.001 from a proper alignment.

(a) What is the probability of a read error?

(b) If aread error occurs, what is the probability that it is due
to a skewed alignment?

2-121. The following circuit operates if and only if there is

a path of functional devices from left to right. Assume that de-

vices fail independently and that the probability of failure of
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each device is as shown. What is the probability that the
circuit does not operate?

0.02

—1 0.01 — 0.01 |—

— 0.01 —— 0.01 —

0.02

2-122. A company that tracks the use of its web site deter-
mined that the more pages a visitor views, the more likely the
visitor is to provide contact information. Use the following ta-
bles to answer the questions:

Number of

pages viewed: 1 2 3 4 or more

Percentage of

visitors: 40 30 20 10
Percentage of visitors

in each page-view

catgory that provide

contact information: 10 10 20 40

(a) What is the probability that a visitor to the web site
provides contact information?

(b) If a visitor provides contact information, what is the
probability that the visitor viewed four or more pages?
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MIND-EXPANDING EXERCISES

2-123. The alignment between the magnetic tape and
head in a magnetic tape storage system affects the per-
formance of the system. Suppose that 10% of the read
operations are degraded by skewed alignments, 5% by
off-center alignments, 1% by both skewness and off-
center, and the remaining read operations are properly
aligned. The probability of a read error is 0.01 from a
skewed alignment, 0.02 from an off-center alignment,
0.06 from both conditions, and 0.001 from a proper

alignment. What is the probability of a read error.

2-124. Suppose that a lot of washers is large enough
that it can be assumed that the sampling is done with re-
placement. Assume that 60% of the washers exceed the

target thickness.

(a) What is the minimum number of washers that need
to be selected so that the probability that all the
washers are thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to
be selected so that the probability that one or more
washers are thicker than the target is at least 0.90?

2-125. A biotechnology manufacturing firm can pro-

duce diagnostic test kits at a cost of $20. Each kit for

which there is a demand in the week of production can be
sold for $100. However, the half-life of components in
the kit requires the kit to be scrapped if it is not sold in
the week of production. The cost of scrapping the kit is

$5. The weekly demand is summarized as follows:
weekly demand

Number of

units 0 50 100 200
Probability of

demand 0.05 0.4 0.3

IMPORTANT TERMS AND CONCEPTS

0.25

How many kits should be produced each week to maxi-
mize the mean earnings of the firm?

2-126. Assume the following characteristics of the
inspection process in Exercise 2-107. If an operator
checks a bolt, the probability that an incorrectly
torqued bolt is identified is 0.95. If a checked bolt is
correctly torqued, the operator’s conclusion is always
correct. What is the probability that at least one bolt in
the sample of four is identified as being incorrectly
torqued?

2-127. If the events 4 and B are independent, show
that 4" and B’ are independent.

2-128. Suppose that a table of part counts is generalized
as follows:

conforms
yes no
supplier 1 ka kb
2 a b

where a, b, and k are positive integers. Let A denote the
event that a part is from supplier 1 and let B denote the
event that a part conforms to specifications. Show that
A and B are independent events.

This exercise illustrates the result that whenever the
rows of a table (with » rows and ¢ columns) are propor-
tional, an event defined by a row category and an event
defined by a column category are independent.

In the E-book, click on any Event

term or concept below to  Independence

go to that subject. Multiplication rule
Addition rule Mutually exclusive
Axioms of probability events
Bayes’ theorem Outcome
Conditional probability Random experiment
Equally likely outcomes

Random variables CD MATERIAL
discrete and .
. Permutation
continuous
Combination

Sample spaces—discrete
and continuous

Total probability rule

With or without
replacement



2-1.4 Counting Techniques (CD Only)

Multiplication
Rule (for
counting

techniques)

EXAMPLE §2-1

In many of the examples in Chapter 2, it is easy to determine the number of outcomes in each
event. In more complicated examples, determining the number of outcomes that comprise the
sample space (or an event) becomes more difficult. To associate probabilities with events, it is
important to know the number of outcomes both in an event and in the sample space. Some
simple rules can be used to simplify the calculations.

In Example 2-4, an automobile manufacturer provides vehicles equipped with selected
options. Each vehicle is ordered

With or without an automatic transmission
With or without air conditioning

With one of three choices of a stereo system
With one of four exterior colors

The tree diagram in Fig. 2-6 describes the sample space of all possible vehicle types. The size
of the sample space equals the number of branches in the last level of the tree and this quantity
equals 2 X 2 X 3 X 4 =48. This leads to the following useful result.

If an operation can be described as a sequence of & steps, and

if the number of ways of completing step 1 is n;, and

if the number of ways of completing step 2 is n, for each way of completing
step 1, and

if the number of ways of completing step 3 is n; for each way of completing
step 2, and so forth,

the total number of ways of completing the operation is

n1><n2><~~~><nk

In the design of a casing for a gear housing, we can use four different types of fasteners,
three different bolt lengths, and three different bolt locations. From the multiplication rule,
4 X 3 X 3 = 36 different designs are possible.

Permutations

Another useful calculation is the number of ordered sequences of the elements of a set.
Consider a set of elements, such as S = {a, b, c}. A permutation of the elements is an ordered
sequence of the elements. For example, abc, acbh, bac, bca, cab, and cba are all of the permu-
tations of the elements of S.

The number of permutations of » different elements is n! where

nl=nXm—-1)XMn—-2)X - X2X1 (S2-1)

2-1
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EXAMPLE S2-2

EXAMPLE S2-3

This result follows from the multiplication rule. A permutation can be constructed by select-
ing the element to be placed in the first position of the sequence from the n elements, then
selecting the element for the second position from the n» — 1 remaining elements, then select-
ing the element for the third position from the remaining n» — 2 elements, and so forth.
Permutations such as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the
elements of a set. The following result also follows from the multiplication rule.

The number of permutations of a subset of 7 elements selected from a set of n differ-
ent elements is

Pl=nXmh—-1)Xn=2)X - Xn-—r+1)= (S2-2)

n!
(n—r)!

A printed circuit board has eight different locations in which a component can be placed. If four
different components are to be placed on the board, how many different designs are possible?

Each design consists of selecting a location from the eight locations for the first compo-
nent, a location from the remaining seven for the second component, a location from the re-
maining six for the third component, and a location from the remaining five for the fourth
component. Therefore,

8
P}=8X7X6X5= o 1680 different designs are possible.

Sometimes we are interested in counting the number of ordered sequences for objects that
are not all different. The following result is a useful, general calculation.

The number of permutations of » = n; + n, + --- + n, objects of which »n, are of
one type, 1, are of a second type, ..., and n, are of an rth type is

n!
ST S2-3
n!nyl ns! ... n,l (S2-3)

Consider a machining operation in which a piece of sheet metal needs two identical diameter
holes drilled and two identical size notches cut. We denote a drilling operation as d and a
notching operation as 7. In determining a schedule for a machine shop, we might be interested
in the number of different possible sequences of the four operations. The number of possible
sequences for two drilling operations and two notching operations is

41

T

The six sequences are easily summarized: ddnn, dndn, dnnd, nddn, ndnd, nndd.



EXAMPLE S2-4

EXAMPLE S2-5

EXAMPLE S2-6

2-3

A part is labeled by printing with four thick lines, three medium lines, and two thin lines. If
each ordering of the nine lines represents a different label, how many different labels can be
generated by using this scheme?

From Equation S2-3, the number of possible part labels is

9!
41312!

= 2520

Combinations
Another counting problem of interest is the number of subsets of 7 elements that can be se-
lected from a set of n elements. Here, order is not important. Every subset of » elements can
be indicated by listing the elements in the set and marking each element with a “*” if it is to
be included in the subset. Therefore, each permutation of » *’s and n — r blanks indicate a dif-
ferent subset and the number of these are obtained from Equation S2-3.

For example, if the set is S = {a, b, ¢, d} the subset {a, c} can be indicated as

a b ¢ d

* %

The number of subsets of size » that can be selected from a set of n elements is

denoted as (}') or C and
n n!
=—— 2-4
(r) ri(n — r)! (52-4)

A printed circuit board has eight different locations in which a component can be placed. If
five identical components are to be placed on the board, how many different designs are pos-
sible?

Each design is a subset of the eight locations that are to contain the components. From
Equation S2-4, the number of possible designs is

8!
513!

= 56

The following example uses the multiplication rule in combination with Equation S2-4 to an-
swer a more difficult, but common, question.

A bin of 50 manufactured parts contains three defective parts and 47 nondefective parts. A
sample of six parts is selected from the 50 parts. Selected parts are not replaced. That is, each
part can only be selected once and the sample is a subset of the 50 parts. How many different
samples are there of size six that contain exactly two defective parts?

A subset containing exactly two defective parts can be formed by first choosing the
two defective parts from the three defective parts. Using Equation S2-4, this step can be
completed in

) —i—3d'ff
5 BEINTES 1fterent ways



Then, the second step is to select the remaining four parts from the 47 acceptable parts in the
bin. The second step can be completed in

47!

()%
4) 4143

= 178,365 different ways

Therefore, from the multiplication rule, the number of subsets of size six that contain exactly

two defective items is

3 X 178,365 = 535,095

As an additional computation, the total number of different subsets of size six is found

to be

(

= % 15,890,700
Coel44r T

When probability is discussed in this chapter, the probability of an event is determined as
the ratio of the number of outcomes in the event to the number of outcomes in the sample
space (for equally likely outcomes). Therefore, the probability that a sample contains exactly

two defective parts is

15,890,700

535,095
= 0.034

Note that Example S2-7 illustrates the hypergeometric distribution.

EXERCISES FOR SECTION 2-1.4

S2-1.  An order for a personal digital assistant can specify
any one of five memory sizes, any one of three types of dis-
plays, any one of four sizes of a hard disk, and can either in-
clude or not include a pen tablet. How many different systems
can be ordered?

S2-2. In a manufacturing operation, a part is produced by
machining, polishing, and painting. If there are three machine
tools, four polishing tools, and three painting tools, how many
different routings (consisting of machining, followed by pol-
ishing, and followed by painting) for a part are possible?
S2-3. New designs for a wastewater treatment tank have
proposed three possible shapes, four possible sizes, three loca-
tions for input valves, and four locations for output valves.
How many different product designs are possible?

S2-4. A manufacturing process consists of 10 operations
that can be completed in any order. How many different pro-
duction sequences are possible?

S2-5. A manufacturing operations consists of 10 opera-
tions. However, five machining operations must be com-
pleted before any of the remaining five assembly operations

can begin. Within each set of five, operations can be com-

pleted in any order. How many different production se-

quences are possible?

S2-6. In a sheet metal operation, three notches and four

bends are required. If the operations can be done in any order,

how many different ways of completing the manufacturing are

possible?

S2-7. A lot of 140 semiconductor chips is inspected by

choosing a sample of five chips. Assume 10 of the chips do not

conform to customer requirements.

(a) How many different samples are possible?

(b) How many samples of five contain exactly one noncon-
forming chip?

(c) How many samples of five contain at least one noncon-
forming chip?

S2-8. In the layout of a printed circuit board for an elec-

tronic product, there are 12 different locations that can accom-

modate chips.

(a) If five different types of chips are to be placed on the
board, how many different layouts are possible?



(b) If the five chips that are placed on the board are of the
same type, how many different layouts are possible?

S2-9. In the laboratory analysis of samples from a chemical

process, five samples from the process are analyzed daily. In

addition, a control sample is analyzed two times each day to
check the calibration of the laboratory instruments.

(a) How many different sequences of process and control
samples are possible each day? Assume that the five
process samples are considered identical and that the two
control samples are considered identical.

(b) How many different sequences of process and control sam-
ples are possible if we consider the five process samples to
be different and the two control samples to be identical.

(c) For the same situation as part (b), how many sequences
are possible if the first test of each day must be a control
sample?

S2-10. In the design of an electromechanical product, seven

different components are to be stacked into a cylindrical cas-

ing that holds 12 components in a manner that minimizes the
impact of shocks. One end of the casing is designated as the
bottom and the other end is the top.

(a) How many different designs are possible?

(b) If the seven components are all identical, how many dif-
ferent designs are possible?

(c) If the seven components consist of three of one type of
component and four of another type, how many different
designs are possible? (more difficult)

S2-11. The design of a communication system considered

the following questions:

(a) How many three-digit phone prefixes that are used to rep-
resent a particular geographic area (such as an area code)
can be created from the digits 0 through 9?

(b) As in part (a), how many three-digit phone prefixes are
possible that do not start with 0 or 1, but contain 0 or 1 as
the middle digit?

(¢) How many three-digit phone prefixes are possible in
which no digit appears more than once in each prefix?

2-5

S2-12. A byte is a sequence of eight bits and each bit is ei-

ther 0 or 1.

(a) How many different bytes are possible?

(b) If the first bit of a byte is a parity check, that is, the first
byte is determined from the other seven bits, how many
different bytes are possible?

S2-13. Inachemical plant, 24 holding tanks are used for fi-

nal product storage. Four tanks are selected at random and

without replacement. Suppose that six of the tanks contain
material in which the viscosity exceeds the customer require-
ments.

(a) What is the probability that exactly one tank in the sample
contains high viscosity material?

(b) What is the probability that at least one tank in the sample
contains high viscosity material?

(c) In addition to the six tanks with high viscosity levels, four
different tanks contain material with high impurities.
What is the probability that exactly one tank in the sample
contains high viscosity material and exactly one tank in
the sample contains material with high impurities?

S2-14. Plastic parts produced by an injection-molding oper-
ation are checked for conformance to specifications. Each tool
contains 12 cavities in which parts are produced, and these
parts fall into a conveyor when the press opens. An inspector
chooses 3 parts from among the 12 at random. Two cavities
are affected by a temperature malfunction that results in parts
that do not conform to specifications.

(a) What is the probability that the inspector finds exactly one
nonconforming part?

(b) What is the probability that the inspector finds at least one
nonconforming part?

S2-15. A bin of 50 parts contains five that are defective. A

sample of two is selected at random, without replacement.

(a) Determine the probability that both parts in the sample are
defective by computing a conditional probability.

(b) Determine the answer to part (a) by using the subset ap-
proach that was described in this section.
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