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4Continuous Random
Variables and 
Probability 
Distributions

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability density functions.
2. Determine probabilities from cumulative distribution functions and cumulative distribution func-

tions from probability density functions, and the reverse.
3. Calculate means and variances for continuous random variables.
4. Understand the assumptions for each of the continuous probability distributions presented.
5. Select an appropriate continuous probability distribution to calculate probabilities in specific

applications.
6. Calculate probabilities, determine means and variances for each of the continuous probability

distributions presented.
7. Standardize normal random variables.

4-1 CONTINUOUS RANDOM
VARIABLES

4-2 PROBABILITY DISTRIBUTIONS
AND PROBABILITY DENSITY
FUNCTIONS

4-3 CUMULATIVE DISTRIBUTION
FUNCTIONS

4-4 MEAN AND VARIANCE OF A
CONTINUOUS RANDOM 
VARIABLE

4-5 CONTINUOUS UNIFORM 
DISTRIBUTION

4-6 NORMAL DISTRIBUTION

4-7 NORMAL APPROXIMATION TO
THE BINOMIAL AND POISSON
DISTRIBUTIONS

4-8 CONTINUITY CORRECTION TO
IMPROVE THE APPROXIMATION 
(CD ONLY)

4-9 EXPONENTIAL DISTRIBUTION

4-10 ERLANG AND GAMMA 
DISTRIBUTIONS

4-10.1 Erlang Distribution

4-10.2 Gamma Distribution

4-11 WEIBULL DISTRIBUTION

4-12 LOGNORMAL DISTRIBUTION
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98 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

8. Use the table for the cumulative distribution function of a standard normal distribution to calcu-
late probabilities.

9. Approximate probabilities for some binomial and Poisson distributions.

CD MATERIAL
10. Use continuity corrections to improve the normal approximation to those binomial and Poisson

distributions.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

4-1 CONTINUOUS RANDOM VARIABLES

Previously, we discussed the measurement of the current in a thin copper wire. We noted that
the results might differ slightly in day-to-day replications because of small variations in vari-
ables that are not controlled in our experiment—changes in ambient temperatures, small im-
purities in the chemical composition of the wire, current source drifts, and so forth.

Another example is the selection of one part from a day’s production and very accurately
measuring a dimensional length. In practice, there can be small variations in the actual
measured lengths due to many causes, such as vibrations, temperature fluctuations, operator
differences, calibrations, cutting tool wear, bearing wear, and raw material changes. Even the
measurement procedure can produce variations in the final results.

In these types of experiments, the measurement of interest—current in a copper wire ex-
periment, length of a machined part—can be represented by a random variable. It is reason-
able to model the range of possible values of the random variable by an interval (finite or
infinite) of real numbers. For example, for the length of a machined part, our model enables
the measurement from the experiment to result in any value within an interval of real numbers.
Because the range is any value in an interval, the model provides for any precision in length
measurements. However, because the number of possible values of the random variable X is
uncountably infinite, X has a distinctly different distribution from the discrete random vari-
ables studied previously. The range of X includes all values in an interval of real numbers; that
is, the range of X can be thought of as a continuum.

A number of continuous distributions frequently arise in applications. These distributions
are described, and example computations of probabilities, means, and variances are provided
in the remaining sections of this chapter.

4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY
DENSITY FUNCTIONS

Density functions are commonly used in engineering to describe physical systems. For exam-
ple, consider the density of a loading on a long, thin beam as shown in Fig. 4-1. For any point
x along the beam, the density can be described by a function (in grams/cm). Intervals with
large loadings correspond to large values for the function. The total loading between points a
and b is determined as the integral of the density function from a to b. This integral is the area
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4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS 99

under the density function over this interval, and it can be loosely interpreted as the sum of all
the loadings over this interval.

Similarly, a probability density function f(x) can be used to describe the probability dis-
tribution of a continuous random variable X. If an interval is likely to contain a value for X,
its probability is large and it corresponds to large values for f(x). The probability that X is be-
tween a and b is determined as the integral of f(x) from a to b. See Fig. 4-2.

For a continuous random variable X, a probability density function is a function
such that

(1)

(2)

(3) area under from a to b

for any a and b (4-1)

f 1x2P1a � X � b2 � �
b

a
 
f 1x2 dx �

�
�

��

 f 1x2 dx � 1

f 1x2 � 0

Definition

Lo
ad

in
g

x

P(a < X < b)

a b x

f (x)

Figure 4-1 Density
function of a loading on a
long, thin beam.

Figure 4-2 Probability determined from the area
under f(x).

A probability density function provides a simple description of the probabilities associ-
ated with a random variable. As long as f(x) is nonnegative and 

so that the probabilities are properly restricted. A probability density
function is zero for x values that cannot occur and it is assumed to be zero wherever it is not
specifically defined.

A histogram is an approximation to a probability density function. See Fig. 4-3. For each
interval of the histogram, the area of the bar equals the relative frequency (proportion) of the
measurements in the interval. The relative frequency is an estimate of the probability that a
measurement falls in the interval. Similarly, the area under f(x) over any interval equals the
true probability that a measurement falls in the interval.

The important point is that f(x) is used to calculate an area that represents the prob-
ability that X assumes a value in [a, b]. For the current measurement example, the proba-
bility that X results in [14 mA, 15 mA] is the integral of the probability density function of
X over this interval. The probability that X results in [14.5 mA, 14.6 mA] is the integral of

0 � P1a � X � b2 � 1
��

��   
f 1x2 dx � 1,
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100 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

the same function, f(x), over the smaller interval. By appropriate choice of the shape of f(x),
we can represent the probabilities associated with any continuous random variable X. The
shape of f(x) determines how the probability that X assumes a value in [14.5 mA, 14.6 mA]
compares to the probability of any other interval of equal or different length.

For the density function of a loading on a long thin beam, because every point has zero
width, the loading at any point is zero. Similarly, for a continuous random variable X and any
value x.

Based on this result, it might appear that our model of a continuous random variable is use-
less. However, in practice, when a particular current measurement is observed, such as 14.47
milliamperes, this result can be interpreted as the rounded value of a current measurement that
is actually in a range such as Therefore, the probability that the
rounded value 14.47 is observed as the value for X is the probability that X assumes a value in
the interval [14.465, 14.475], which is not zero. Similarly, because each point has zero
probability, one need not distinguish between inequalities such as � or � for continuous
random variables.

14.465 � x � 14.475.

 P1X � x2 � 0

If X is a continuous random variable, for any and 

(4-2)P1x1 � X � x22 � P1x1 � X � x22 � P1x1 � X � x22 � P1x1 � X � x22
x2,x1

EXAMPLE 4-1 Let the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X is [0, 20 mA], and assume that the probability den-
sity function of X is for What is the probability that a current meas-
urement is less than 10 milliamperes?

The probability density function is shown in Fig. 4-4. It is assumed that wherever
it is not specifically defined. The probability requested is indicated by the shaded area in Fig. 4-4.

P1X � 102 � �
10

0
 
f 1x2 dx � �  

10

0

0.05 dx � 0.5

f 1x2 � 0

0 � x � 20.f 1x2 � 0.05

Figure 4-4 Probability density
function for Example 4-1.

0 10 20 x

0.05

f (x)

Figure 4-3 Histogram approximates a probability density
function.

 x

f (x)
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4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS 101

As another example,

EXAMPLE 4-2 Let the continuous random variable X denote the diameter of a hole drilled in a sheet metal
component. The target diameter is 12.5 millimeters. Most random disturbances to the process
result in larger diameters. Historical data show that the distribution of X can be modeled by a
probability density function 

If a part with a diameter larger than 12.60 millimeters is scrapped, what proportion of
parts is scrapped? The density function and the requested probability are shown in Fig. 4-5. A
part is scrapped if Now,

What proportion of parts is between 12.5 and 12.6 millimeters? Now,

Because the total area under f(x) equals 1, we can also calculate 

EXERCISES FOR SECTION 4-2

1 � P1X � 12.62 � 1 � 0.135 � 0.865.
P112.5 � X � 12.62 �

P112.5 � X � 12.62 � �
12.6

12.5
 
f 1x2 dx � �e�201x�12.52 ` 12.6

12.5
� 0.865

P1X � 12.602 � �
�

12.6
 
f 1x2 dx � �

�

12.6
 

20e�201x�12.52 dx � �e�201x�12.52 ` �
12.6

� 0.135

X � 12.60.

f 1x2 � 20e�201x�12.52, x � 12.5.

P15 � X � 202 � �
20

5
 
f 1x2 dx � 0.75

Figure 4-5 Probability density function for
Example 4-2.

12.5

f (x)

x12.6

4-1. Suppose that for Determine the fol-
lowing probabilities:
(a) (b)
(c) (d)
(e)

4-2. Suppose that for 
(a) Determine x such that 
(b) Determine x such that P1X � x2 � 0.10.

P1x � X 2 � 0.10.
0 � x.f 1x2 � e�x

P13 � X 2
P1X � 42P1X � 32
P11 � X � 2.52P11 � X 2

0 � x.f 1x2 � e�x 4-3. Suppose that for Determine the
following probabilities:
(a) (b)
(c) (d)
(e)

4-4. Suppose that Determine the
following probabilities:
(a) (b) P12 � X � 52P11 � X 2

f 1x2 � e�1x�42 for 4 � x.

P1X � 3.5 or X � 4.52
P1X � 4.52P14 � X � 52
P1X � 3.52P1X � 42
3 � x � 5.f 1x2 � x	8
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Extending the definition of f(x) to the entire real line enables us to define the cumulative dis-
tribution function for all real numbers. The following example illustrates the definition.

EXAMPLE 4-3 For the copper current measurement in Example 4-1, the cumulative distribution function of
the random variable X consists of three expressions. If Therefore,

F1x2 � 0, for x � 0

x � 0, f 1x2 � 0.

102 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-3 CUMULATIVE DISTRIBUTION FUNCTIONS

An alternative method to describe the distribution of a discrete random variable can also be
used for continuous random variables.

The cumulative distribution function of a continuous random variable X is

(4-3)

for �� � x � �.

F1x2 � P1X � x2 � �
x

��
 
f 1u2 du

Definition

(c) (d)
(e) Determine x such that P(X � x) � 0.90.

4-5. Suppose that for Determine
the following probabilities:
(a) (b)
(c) (d)
(e)
(f) Determine x such that 

4-6. The probability density function of the time to failure
of an electronic component in a copier (in hours) is f(x) � 

for Determine the probability that

(a) A component lasts more than 3000 hours before failure.
(b) A component fails in the interval from 1000 to 2000 hours.
(c) A component fails before 1000 hours.
(d) Determine the number of hours at which 10% of all com-

ponents have failed.

4-7. The probability density function of the net weight in
pounds of a packaged chemical herbicide is for

pounds.
(a) Determine the probability that a package weighs more

than 50 pounds.

49.75 � x � 50.25
f 1x2 � 2.0

x � 0.
e�x	1000

1000

P1x � X 2 � 0.05.
P1X � 0 or X � �0.52

P1X � �22P1�0.5 � X � 0.52
P10.5 � X 2P10 � X 2

�1 � x � 1.f 1x2 � 1.5x2

P18 � X � 122P15 � X 2 (b) How much chemical is contained in 90% of all packages?

4-8. The probability density function of the length of a
hinge for fastening a door is for 
millimeters. Determine the following:
(a)
(b)
(c) If the specifications for this process are from 74.7

to 75.3 millimeters, what proportion of hinges meets
specifications?

4-9. The probability density function of the length of a
metal rod is for 2.3 � x � 2.8 meters.
(a) If the specifications for this process are from 2.25 to 2.75

meters, what proportion of the bars fail to meet the speci-
fications?

(b) Assume that the probability density function is 
for an interval of length 0.5 meters. Over what value
should the density be centered to achieve the greatest pro-
portion of bars within specifications?

4-10. If X is a continuous random variable, argue that P(x1 �
X � x2) � P(x1 � X � x2) � P(x1 � X � x2) � P(x1 � X � x2).

f 1x2 � 2

f 1x2 � 2

P1X � 74.8 or X � 75.22
P1X � 74.82

74.6 � x � 75.4f 1x2 � 1.25
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4-3 CUMULATIVE DISTRIBUTION FUNCTIONS 103

and

Finally,

Therefore,

The plot of F(x) is shown in Fig. 4-6.

Notice that in the definition of F(x) any can be changed to and vice versa. That is,
F(x) can be defined as either 0.05x or 0 at the end-point and F(x) can be defined as
either 0.05x or 1 at the end-point In other words, F(x) is a continuous function. For a
discrete random variable, F(x) is not a continuous function. Sometimes, a continuous random
variable is defined as one that has a continuous cumulative distribution function.

EXAMPLE 4-4 For the drilling operation in Example 4-2, F(x) consists of two expressions.

for

and for 

Therefore,

Figure 4-7 displays a graph of F(x).

F1x2 � e0 x � 12.5

1 � e�201x�12.52 12.5 � x

 � 1 � e�201x�12.52

 F1x2 � �
x

12.5

20e�201u�12.52  du

12.5 � x

x � 12.5F1x2 � 0

x � 20.
x � 0,

��

F1x2 � •
0 x � 0

0.05x 0 � x � 20

1 20 � x

F1x2 � �
x

0
 
f 1u2 du � 1, for 20 � x

F1x2 � �
x

0
 
f 1u2 du � 0.05x, for 0 � x � 20

Figure 4-6 Cumulative distribution
function for Example 4-3.

20

1

x0

F(x)

Figure 4-7 Cumulative distribution
function for Example 4-4.

12.5

1

x0

F(x)
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104 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The probability density function of a continuous random variable can be determined from
the cumulative distribution function by differentiating. Recall that the fundamental theorem of
calculus states that 

Then, given F(x)

as long as the derivative exists.

EXAMPLE 4-5 The time until a chemical reaction is complete (in milliseconds) is approximated by the
cumulative distribution function

Determine the probability density function of X. What proportion of reactions is complete
within 200 milliseconds? Using the result that the probability density function is the deriva-
tive of the F(x), we obtain

The probability that a reaction completes within 200 milliseconds is

EXERCISES FOR SECTION 4-3

P1X � 2002 � F12002 � 1 � e�2 � 0.8647.

f 1x2 � e0 x � 0

0.01e�0.01x 0 � x

F1x2 � e0 x � 0

1 � e�0.01x 0 � x

f 1x2 �
dF1x2

dx

d

dx
 �

x

��

f 1u2 du � f 1x2

4-11. Suppose the cumulative distribution function of the
random variable X is

Determine the following:
(a) (b)
(c) (d)

4-12. Suppose the cumulative distribution function of the
random variable X is

F1x2 � •
0 x � �2

0.25x � 0.5 �2 � x � 2

1 2 � x

P1X � 62P1X � �22
P1X � 1.52P1X � 2.82

F1x2 � •
0 x � 0

0.2x 0 � x � 5

1 5 � x

Determine the following:
(a) (b)
(c) (d)

4-13. Determine the cumulative distribution function for
the distribution in Exercise 4-1.

4-14. Determine the cumulative distribution function for
the distribution in Exercise 4-3.

4-15. Determine the cumulative distribution function for
the distribution in Exercise 4-4.

4-16. Determine the cumulative distribution function for
the distribution in Exercise 4-6. Use the cumulative distribu-
tion function to determine the probability that a component
lasts more than 3000 hours before failure.

4-17. Determine the cumulative distribution function for
the distribution in Exercise 4-8. Use the cumulative distribu-
tion function to determine the probability that a length
exceeds 75 millimeters. 

P1�1 � X � 12P1X � �22
P1X � �1.52P1X � 1.82
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4-4 MEAN AND VARIANCE OF A CONTINUOUS
RANDOM VARIABLE

The mean and variance of a continuous random variable are defined similarly to a discrete
random variable. Integration replaces summation in the definitions. If a probability density
function is viewed as a loading on a beam as in Fig. 4-1, the mean is the balance point.

4-4 MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE 105

Determine the probability density function for each of the fol-
lowing cumulative distribution functions.

4-18.
4-19.

4-20.

4-21. The gap width is an important property of a magnetic
recording head. In coded units, if the width is a continuous ran-
dom variable over the range from 0 � x � 2 with f(x) � 0.5x,
determine the cumulative distribution function of the gap width.

F1x2 � µ
0 x � �2

0.25x � 0.5 �2 � x � 1

0.5x � 0.25 1 � x � 1.5

1 1.5 � x

F1x2 � µ
0 x � 0

0.2x 0 � x � 4

0.04x � 0.64 4 � x � 9

1 9 � x

F1x2 � 1 � e�2x  x � 0

Suppose X is a continuous random variable with probability density function f(x).
The mean or expected value of X, denoted as or E(X), is

(4-4)

The variance of X, denoted as V(X) or is

The standard deviation of X is .	 � 2	2

	2 � V1X 2 � �
�

��

 1x � 
22f 1x2 dx � �
�

��

 x2f 1x2 dx � 
2

	2,


 � E1X 2 � �
�

��

 xf 1x2 dx




Definition

The equivalence of the two formulas for variance can be derived as one, as was done for dis-
crete random variables.

EXAMPLE 4-6 For the copper current measurement in Example 4-1, the mean of X is

The variance of X is

V1X 2 � �
20

0

 1x � 1022f 1x2 dx � 0.051x � 1023�3 ` 20

0
� 33.33

E1X 2 � �
20

0

 xf 1x2 dx � 0.05x2�2 ` 20

0
� 10
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106 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-7 In Example 4-1, X is the current measured in milliamperes. What is the expected value of the
squared current? Now, Therefore,

In the previous example, the expected value of X 2 does not equal E(X) squared. However, in
the special case that for any constants a and b, This
can be shown from the properties of integrals.

EXAMPLE 4-8 For the drilling operation in Example 4-2, the mean of X is

Integration by parts can be used to show that

The variance of X is

Although more difficult, integration by parts can be used two times to show that V(X) � 0.0025.

EXERCISES FOR SECTION 4-4

V1X 2 � �
�

12.5

 1x � 12.5522f 1x2 dx

E1X 2 � �xe�201x�12.52 � e�201x�12.52
20

 ` �
12.5

� 12.5 � 0.05 � 12.55

E1X 2 � �
�

12.5

 xf 1x2 dx � �
�

12.5

 x 20e�201x�12.52 dx

E 3h1X 2 4 � aE1X 2 � b.h1X 2 � aX � b

E 3h1X 2 4 � �
�

��

 x2f 1x2 dx � �
20

0

 0.05x2 dx � 0.05 
x3

3
 ` 20

0
� 133.33

h1X 2 � X 2.

If X is a continuous random variable with probability density function f(x),

(4-5)E 3h1X 2 4 � �
�

��

 h1x2  f 1x2 dx

Expected Value
of a Function of

a Continuous
Random
Variable

4-22. Suppose for Determine the
mean and variance of X.

4-23. Suppose for Determine the
mean and variance of X.

4-24. Suppose for Determine
the mean and variance of X.

�1 � x � 1.f 1x2 � 1.5x2

0 � x � 4.f 1x2 � 0.125x

0 � x � 4.f 1x2 � 0.25 4-25. Suppose that for Determine
the mean and variance for x.

4-26. Determine the mean and variance of the weight of
packages in Exercise 4.7.

4-27. The thickness of a conductive coating in micrometers
has a density function of 600x�2 for 100 
m � x � 120 
m.

3 � x � 5.f 1x2 � x�8

The expected value of a function h(X ) of a continuous random variable is defined similarly to
a function of a discrete random variable.
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4-5 CONTINUOUS UNIFORM DISTRIBUTION

The simplest continuous distribution is analogous to its discrete counterpart.

4-5 CONTINUOUS UNIFORM DISTRIBUTION 107

A continuous random variable X with probability density function

(4-6)

is a continuous uniform random variable.

f 1x2 � 1	 1b � a2,  a � x � b

Definition

The probability density function of a continuous uniform random variable is shown in Fig. 4-8.
The mean of the continuous uniform random variable X is

The variance of X is

These results are summarized as follows.

V1X 2 � �  

b

a

ax � aa 
 b

2
bb2

b � a
 dx �

ax �
a 
 b

2
b3

31b � a2  
†
b

a
�
1b � a22

12

E1X 2 � �  

b

a

x

b � a
 dx �

0.5x2

b � a
 ` b

a
�
1a 
 b2

2

(a) Determine the mean and variance of the coating thickness.
(b) If the coating costs $0.50 per micrometer of thickness on

each part, what is the average cost of the coating per
part?

4-28. Suppose that contamination particle size (in microm-
eters) can be modeled as for Determine
the mean of X.

4-29. Integration by parts is required. The probability den-
sity function for the diameter of a drilled hole in millimeters is

for mm. Although the target diameter is 5
millimeters, vibrations, tool wear, and other nuisances pro-
duce diameters larger than 5 millimeters.

x � 510e�101x�52

1 � x.f 1x2 � 2x�3

(a) Determine the mean and variance of the diameter of the
holes.

(b) Determine the probability that a diameter exceeds 5.1 mil-
limeters.

4-30. Suppose the probability density function of the length
of computer cables is f(x) � 0.1 from 1200 to 1210 millime-
ters.
(a) Determine the mean and standard deviation of the cable

length.
(b) If the length specifications are 1195 � x � 1205

millimeters, what proportion of cables are within specifi-
cations?

If X is a continuous uniform random variable over a � x � b,

(4-7)� � E1X 2 �
1a 
 b2

2
 and �2 � V1X 2 �

1b � a22
12
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108 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-9 Let the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X is [0, 20 mA], and assume that the probability den-
sity function of X is 

What is the probability that a measurement of current is between 5 and 10 milliamperes?
The requested probability is shown as the shaded area in Fig. 4-9.

The mean and variance formulas can be applied with and Therefore,

Consequently, the standard deviation of X is 5.77 mA.

The cumulative distribution function of a continuous uniform random variable is ob-
tained by integration. If 

Therefore, the complete description of the cumulative distribution function of a continuous
uniform random variable is

An example of F(x) for a continuous uniform random variable is shown in Fig. 4-6.

EXERCISES FOR SECTION 4-5

F1x2 � •
0 x � a

1x � a2	 1b � a2 a � x � b

1 b � x

F1x2 � �
x

a

1	 1b � a2  du � x	 1b � a2 � a	 1b � a2

a � x � b,

E1X 2 � 10 mA and V1X 2 � 202	12 � 33.33 mA2

b � 20.a � 0

 � 510.052 � 0.25

 P15 � X � 102 � �
10

5
 
f 1x2 dx

f 1x2 � 0.05, 0 � x � 20.

Figure 4-9 Probability for Example 4-9.

x

f(x)

0 5 10 15 20

0.05

Figure 4-8 Continuous uniform
probability density function.

a

1
b – a

x

f(x)

b

4-31. Suppose X has a continuous uniform distribution over
the interval [1.5, 5.5].
(a) Determine the mean, variance, and standard deviation of X.
(b) What is ?

4-32. Suppose X has a continuous uniform distribution over
the interval 3�1, 1 4 .

P1X � 2.52

(a) Determine the mean, variance, and standard deviation of X.
(b) Determine the value for x such that P(�x � X � x) � 0.90.

4-33. The net weight in pounds of a packaged chemical her-
bicide is uniform for pounds.
(a) Determine the mean and variance of the weight of pack-

ages.

49.75 � x � 50.25
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4-6 NORMAL DISTRIBUTION 109

4-6 NORMAL DISTRIBUTION

Undoubtedly, the most widely used model for the distribution of a random variable is a normal
distribution. Whenever a random experiment is replicated, the random variable that equals the
average (or total) result over the replicates tends to have a normal distribution as the number of
replicates becomes large. De Moivre presented this fundamental result, known as the central
limit theorem, in 1733. Unfortunately, his work was lost for some time, and Gauss independ-
ently developed a normal distribution nearly 100 years later. Although De Moivre was later
credited with the derivation, a normal distribution is also referred to as a Gaussian distribution.

When do we average (or total) results? Almost always. For example, an automotive engi-
neer may plan a study to average pull-off force measurements from several connectors. If we
assume that each measurement results from a replicate of a random experiment, the normal
distribution can be used to make approximate conclusions about this average. These conclu-
sions are the primary topics in the subsequent chapters of this book.

Furthermore, sometimes the central limit theorem is less obvious. For example, assume that
the deviation (or error) in the length of a machined part is the sum of a large number of in-
finitesimal effects, such as temperature and humidity drifts, vibrations, cutting angle variations,
cutting tool wear, bearing wear, rotational speed variations, mounting and fixturing variations,
variations in numerous raw material characteristics, and variation in levels of contamination. If
the component errors are independent and equally likely to be positive or negative, the total error
can be shown to have an approximate normal distribution. Furthermore, the normal distribution
arises in the study of numerous basic physical phenomena. For example, the physicist Maxwell
developed a normal distribution from simple assumptions regarding the velocities of molecules.

The theoretical basis of a normal distribution is mentioned to justify the somewhat com-
plex form of the probability density function. Our objective now is to calculate probabilities
for a normal random variable. The central limit theorem will be stated more carefully later.

(b) Determine the cumulative distribution function of the
weight of packages.

(c) Determine 

4-34. The thickness of a flange on an aircraft component is
uniformly distributed between 0.95 and 1.05 millimeters.
(a) Determine the cumulative distribution function of flange

thickness.
(b) Determine the proportion of flanges that exceeds 1.02

millimeters.
(c) What thickness is exceeded by 90% of the flanges?
(d) Determine the mean and variance of flange thickness.

4-35. Suppose the time it takes a data collection operator to
fill out an electronic form for a database is uniformly between
1.5 and 2.2 minutes.
(a) What is the mean and variance of the time it takes an op-

erator to fill out the form?
(b) What is the probability that it will take less than two min-

utes to fill out the form?
(c) Determine the cumulative distribution function of the time

it takes to fill out the form.

4-36. The probability density function of the time it takes a
hematology cell counter to complete a test on a blood sample
is seconds.f 1x2 � 0.2 for 50 � x � 75

P1X � 50.12.
(a) What percentage of tests require more than 70 seconds to

complete.
(b) What percentage of tests require less than one minute to

complete.
(c) Determine the mean and variance of the time to complete

a test on a sample. 

4-37. The thickness of photoresist applied to wafers in
semiconductor manufacturing at a particular location on the
wafer is uniformly distributed between 0.2050 and 0.2150
micrometers.
(a) Determine the cumulative distribution function of pho-

toresist thickness.
(b) Determine the proportion of wafers that exceeds 0.2125

micrometers in photoresist thickness.
(c) What thickness is exceeded by 10% of the wafers?
(d) Determine the mean and variance of photoresist thickness.

4-38. The probability density function of the time required
to complete an assembly operation is for

seconds.
(a) Determine the proportion of assemblies that requires more

than 35 seconds to complete.
(b) What time is exceeded by 90% of the assemblies?
(c) Determine the mean and variance of time of assembly.

30 � x � 40
f 1x2 � 0.1
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110 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Figure 4-10 Normal probability density functions for
selected values of the parameters and �2.�

A random variable X with probability density function

(4-8)

is a normal random variable with parameters �, where and � � 0.
Also,

(4-9)

and the notation is used to denote the distribution. The mean and variance
of X are shown to equal � and respectively, at the end of this Section 5-6.�2,

N1�, �22

E1X 2 � � and V1X2 � �2

�� � � � �,

f 1x2 �
112	�

 e

�1x��22

2�2   
�� � x � �

Definition

� = 5 x� = 15

σ2 = 1

σ2 = 4

σ2 = 1
f (x)

Random variables with different means and variances can be modeled by normal proba-
bility density functions with appropriate choices of the center and width of the curve. The
value of determines the center of the probability density function and the value of

determines the width. Figure 4-10 illustrates several normal probability density
functions with selected values of � and �2. Each has the characteristic symmetric bell-shaped
curve, but the centers and dispersions differ. The following definition provides the formula for
normal probability density functions.

V1X 2 � �2
E1X 2 � �

EXAMPLE 4-10 Assume that the current measurements in a strip of wire follow a normal distribution with a
mean of 10 milliamperes and a variance of 4 (milliamperes)2. What is the probability that a
measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
This probability is shown as the shaded area under the normal probability density

function in Fig. 4-11. Unfortunately, there is no closed-form expression for the integral of a
normal probability density function, and probabilities based on the normal distribution are
typically found numerically or from a table (that we will later introduce).

Some useful results concerning a normal distribution are summarized below and in
Fig. 4-12. For any normal random variable,

Also, from the symmetry of Because f(x) is positive for
all x, this model assigns some probability to each interval of the real line. However, the

f 1x2, P1X � �2 � P1X � �2 � 0.5.

 P1� � 3� � X � � 
 3�2 � 0.9973
 P1� � 2� � X � � 
 2�2 � 0.9545

 P1� � � � X � � 
 �2 � 0.6827

P1X � 132.
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4-6 NORMAL DISTRIBUTION 111

probability density function decreases as x moves farther from �. Consequently, the probability
that a measurement falls far from � is small, and at some distance from � the probability of an
interval can be approximated as zero.

The area under a normal probability density function beyond 3� from the mean is quite
small. This fact is convenient for quick, rough sketches of a normal probability density func-
tion. The sketches help us determine probabilities. Because more than 0.9973 of the probabil-
ity of a normal distribution is within the interval , 6� is often referred to as
the width of a normal distribution. Advanced integration methods can be used to show that the
area under the normal probability density function from is 1.�� � x � �

1� � 3�, � 
 3�2

Figure 4-11 Probability that X � 13 for a normal ran-
dom variable with and �2 � 4.� � 10

10 x13

f (x)

Figure 4-12 Probabilities associated with a normal
distribution.

– 3 x� � – 2µ � – � � � +� � + 2� � + 3� �

68%

95%

99.7%

f (x)

A normal random variable with 

is called a standard normal random variable and is denoted as Z.
The cumulative distribution function of a standard normal random variable is

denoted as

�1z2 � P1Z � z2

� � 0 and �2 � 1

Definition

Appendix Table II provides cumulative probability values for , for a standard normal
random variable. Cumulative distribution functions for normal random variables are also
widely available in computer packages. They can be used in the same manner as Appendix
Table II to obtain probabilities for these random variables. The use of Table II is illustrated by
the following example.

EXAMPLE 4-11 Assume Z is a standard normal random variable. Appendix Table II provides probabilities of
the form The use of Table II to find is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5. The probability is read from the adjacent col-
umn, labeled 0.00, to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in For ex-
ample, is found by reading down the z column to the row 1.5 and then selecting
the probability from the column labeled 0.03 to be 0.93699.

P1Z � 1.532
P1Z � z2.

P1Z � 1.52P1Z �  z2.

�1z2
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112 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Probabilities that are not of the form P(Z � z ) are found by using the basic rules of prob-
ability and the symmetry of the normal distribution along with Appendix Table II. The fol-
lowing examples illustrate the method.

EXAMPLE 4-12 The following calculations are shown pictorially in Fig. 4-14. In practice, a probability is of-
ten rounded to one or two significant digits.

(1)

(2)

(3)

(4) . This probability can be found from the difference of two
areas, . Now,

Therefore,

P 1�1.25 � Z � 0.372 � 0.64431 � 0.10565 � 0.53866

P1Z � 0.372 � 0.64431 and P1Z � �1.252 � 0.10565

P1Z � 0.372 � P1Z � �1.252P1�1.25 � Z � 0.372
P1Z � �1.372 � P1Z � 1.372 � 0.91465

P1Z � �0.862 � 0.19490.

P1Z � 1.262 � 1 �  P1Z � 1.262 � 1 � 0.89616 � 0.10384

(1) (5)

0 –3.99

(2)

0 0

(3) (7)

0 0 0

0 0 0

1.26 0 1.26

–0.86

0.05

z ≅ 1.65

z ≅ 2.58

0.0050.005

– z

0.99

–1.37

=

1.37

=

0.37–1.25 –1.250.37

–

= –

(4)

–4.6 0

(6)

1

Figure 4-14 Graphical displays for standard normal distributions.

Figure 4-13 Standard
normal probability den-
sity function. z0

= shaded area
P(Z ≤ 1.5) = Φ (1.5)

1.5

0.00 0.01 0.02

0

1.5

z

0.93319

. 
. 

.

. 
. 

.

0.93448 0.93574

0.50000 0.50399 0.50398

0.03

0.93699

0.51197
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(5) cannot be found exactly from Appendix Table II. However, the last
entry in the table can be used to find that . Because

is nearly zero.

(6) Find the value z such that This probability expression can be writ-
ten as . Now, Table II is used in reverse. We search through the
probabilities to find the value that corresponds to 0.95. The solution is illustrated in
Fig. 4-14. We do not find 0.95 exactly; the nearest value is 0.95053, corresponding
to z = 1.65.

(7) Find the value of z such that . Because of the symmetry of
the normal distribution, if the area of the shaded region in Fig. 4-14(7) is to equal
0.99, the area in each tail of the distribution must equal 0.005. Therefore, the value
for z corresponds to a probability of 0.995 in Table II. The nearest probability in
Table II is 0.99506, when z = 2.58.

The preceding examples show how to calculate probabilities for standard normal random
variables. To use the same approach for an arbitrary normal random variable would require a
separate table for every possible pair of values for � and �. Fortunately, all normal probability
distributions are related algebraically, and Appendix Table II can be used to find the probabili-
ties associated with an arbitrary normal random variable by first using a simple transformation.

P1�z � Z � z2 � 0.99

P1Z � z2 � 0.95
P1Z � z2 � 0.05.

P1Z � �4.62 � P1Z � �3.992, P1Z � �4.62P1Z � �3.992 �  0.00003
P1Z � �4.62

4-6 NORMAL DISTRIBUTION 113

If X is a normal random variable with E(X ) � � and V(X ) � �2, the random variable

(4-10)

is a normal random variable with E(Z) � 0 and V(Z) � 1. That is, Z is a standard
normal random variable.

Z �
X � �

�

Creating a new random variable by this transformation is referred to as standardizing.
The random variable Z represents the distance of X from its mean in terms of standard devia-
tions. It is the key step to calculate a probability for an arbitrary normal random variable.

EXAMPLE 4-13 Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)2. What is the proba-
bility that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X � 13). Let Z � (X � 10)�2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X � 13 corresponds to Z � 1.5.
Therefore, from Appendix Table II,

Rather than using Fig. 4-15, the probability can be found from the inequality That is,

P1X � 132 � P  a 1X � 102
2

�
113 � 102

2
b � P1Z � 1.52 � 0.06681

X � 13.

P1X � 132 � P1Z � 1.52 � 1 � P1Z � 1.52 � 1 � 0.93319 � 0.06681
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114 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Figure 4-15 Standardizing a normal random variable.

4 x7 9 10 13 16

–3 z–1.5 –0.5 0 1.5 3

11

0.5

0 1.5

Distribution of Z =
X – µ

σ

Distribution of X

10 13 x

z

Suppose X is a normal random variable with mean � and variance �2. Then,

(4-11)

where Z is a standard normal random variable, and is the z-value
obtained by standardizing X.

The probability is obtained by entering Appendix Table II with .z � 1x � �2	�
z �
1x � �2

�

P 1X � x2 � P  aX � �
� �

x � �
� b � P1Z � z2

EXAMPLE 4-14 Continuing the previous example, what is the probability that a current measurement is be-
tween 9 and 11 milliamperes? From Fig. 4-15, or by proceeding algebraically, we have

Determine the value for which the probability that a current measurement is below
this value is 0.98. The requested value is shown graphically in Fig. 4-16. We need the value of
x such that P(X � x) � 0.98. By standardizing, this probability expression can be written as

Appendix Table II is used to find the z-value such that P(Z � z) � 0.98. The nearest proba-
bility from Table II results in

P1Z � 2.052 � 0.97982

� 0.98
� P1Z � 1x � 102	22

P1X � x2 � P1 1X � 102	2 � 1x � 102	22

 � 0.69146 � 0.30854 � 0.38292
 � P1�0.5 � Z � 0.52 � P1Z � 0.52 � P1Z � �0.52

 P19 � X � 112 � P1 19 � 102	2 � 1X � 102	2 � 111 � 102	22

In the preceding example, the value 13 is transformed to 1.5 by standardizing, and 1.5 is
often referred to as the z-value associated with a probability. The following summarizes the
calculation of probabilities derived from normal random variables.
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Therefore, (x � 10)�2 � 2.05, and the standardizing transformation is used in reverse to solve
for x. The result is

EXAMPLE 4-15 Assume that in the detection of a digital signal the background noise follows a normal distri-
bution with a mean of 0 volt and standard deviation of 0.45 volt. The system assumes a digi-
tal 1 has been transmitted when the voltage exceeds 0.9. What is the probability of detecting
a digital 1 when none was sent?

Let the random variable N denote the voltage of noise. The requested probability is

This probability can be described as the probability of a false detection.
Determine symmetric bounds about 0 that include 99% of all noise readings. The question

requires us to find x such that . A graph is shown in Fig. 4-17. Now,

From Appendix Table II

P 1�2.58 � Z � 2.582 � 0.99

 � P1�x	0.45 � Z � x	0.452 � 0.99
 P1�x � N � x2 � P1�x	0.45 � N	0.45 � x	0.452

P1�x � N � x2 � 0.99

P1N � 0.92 � P  a N

0.45
�

0.9
0.45
b � P1Z � 22 � 1 � 0.97725 � 0.02275

x � 212.052 
 10 � 14.1 milliamperes

4-6 NORMAL DISTRIBUTION 115

10 x

z = = 2.05
x – 10

2

0.98Figure 4-16 Deter-
mining the value of x
to meet a specified
probability.

Standardized distribution of
N

0.45

z– z 0 0 x– x

Distribution of N

Figure 4-17 Deter-
mining the value of x
to meet a specified
probability.
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116 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Therefore,

and

Suppose a digital 1 is represented as a shift in the mean of the noise distribution to 1.8
volts. What is the probability that a digital 1 is not detected? Let the random variable S denote
the voltage when a digital 1 is transmitted. Then,

This probability can be interpreted as the probability of a missed signal.

EXAMPLE 4-16 The diameter of a shaft in an optical storage drive is normally distributed with mean 0.2508
inch and standard deviation 0.0005 inch. The specifications on the shaft are 0.2500 � 0.0015
inch. What proportion of shafts conforms to specifications?

Let X denote the shaft diameter in inches. The requested probability is shown in Fig. 4-18 and

Most of the nonconforming shafts are too large, because the process mean is located very near
to the upper specification limit. If the process is centered so that the process mean is equal to
the target value of 0.2500,

By recentering the process, the yield is increased to approximately 99.73%.
� 0.9973
� 0.99865 � 0.00135
� P1Z � 32 � P1Z � �32
� P1�3 � Z � 32

 P10.2485 � X � 0.25152 � P  a0.2485 � 0.2500
0.0005

� Z �
0.2515 � 0.2500

0.0005
b

 � 0.91924 � 0.0000 � 0.91924
� P1�4.6 � Z � 1.42 � P1Z � 1.42 � P1Z � �4.62

 P10.2485 � X � 0.25152 � P  a0.2485 � 0.2508
0.0005

� Z �
0.2515 � 0.2508

0.0005
b

P1S � 0.92 � P  aS � 1.8
0.45

�
0.9 � 1.8

0.45
b � P1Z � �22 � 0.02275

x � 2.5810.452 � 1.16

x	0.45 � 2.58

0.2515

f (x)

0.2508
0.25

0.2485 x

Specifications

Figure 4-18
Distribution for
Example 4-16.
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4-6 NORMAL DISTRIBUTION 117

Mean and Variance of the Normal Distribution (CD Only)

EXERCISES FOR SECTION 4-6

4-39. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:
(a) P(Z � 1.32) (b) P(Z � 3.0)
(c) P(Z � 1.45) (d) P(Z � �2.15)
(e) P(�2.34 � Z � 1.76)

4-40. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:
(a) P(�1 � Z � 1) (b) P(�2 � Z � 2)
(c) P(�3 � Z � 3) (d) P(Z � 3)
(e) P(0 � Z � 1)

4-41. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:
(a) P( Z � z) � 0.9 (b) P(Z � z) � 0.5
(c) P( Z � z) � 0.1 (d) P(Z � z) � 0.9
(e) P(�1.24 � Z � z) � 0.8

4-42. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:
(a) P(�z � Z � z) � 0.95 (b) P(�z � Z � z) � 0.99
(c) P(�z � Z � z) � 0.68 (d) P(�z � Z � z) � 0.9973

4-43. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the following:
(a) P(X � 13) (b) P(X � 9)
(c) P(6 � X � 14) (d) P(2 � X � 4)
(e) P(�2 � X � 8)

4-44. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the value for x that
solves each of the following:
(a) P(X � x) � 0.5
(b) P(X � x) � 0.95
(c) P(x � X � 10) � 0.2
(d) P(�x � X � 10 � x) � 0.95
(e) P(�x � X � 10 � x) � 0.99

4-45. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the following:
(a) P(X � 11) (b) P(X � 0)
(c) P(3 � X � 7) (d) P(�2 � X � 9)
(e) P(2 � X � 8)

4-46. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the value for x that
solves each of the following:
(a) P(X � x) � 0.5 (b) P(X � x) � 0.95
(c) P(x � X � 9) � 0.2 (d) P(3 � X � x) � 0.95
(e) P(�x � X � x) � 0.99

4-47. The compressive strength of samples of cement can
be modeled by a normal distribution with a mean of 6000 kilo-
grams per square centimeter and a standard deviation of 100
kilograms per square centimeter.

(a) What is the probability that a sample’s strength is less than
6250 Kg/cm2?

(b) What is the probability that a sample’s strength is between
5800 and 5900 Kg/cm2?

(c) What strength is exceeded by 95% of the samples?

4-48. The tensile strength of paper is modeled by a normal
distribution with a mean of 35 pounds per square inch and a
standard deviation of 2 pounds per square inch.
(a) What is the probability that the strength of a sample is less

than 40 lb/in2?
(b) If the specifications require the tensile strength to

exceed 30 lb/in2, what proportion of the samples is
scrapped?

4-49. The line width of for semiconductor manufacturing is
assumed to be normally distributed with a mean of 0.5 mi-
crometer and a standard deviation of 0.05 micrometer.
(a) What is the probability that a line width is greater than

0.62 micrometer?
(b) What is the probability that a line width is between 0.47

and 0.63 micrometer?
(c) The line width of 90% of samples is below what value?

4-50. The fill volume of an automated filling machine used
for filling cans of carbonated beverage is normally distributed
with a mean of 12.4 fluid ounces and a standard deviation of
0.1 fluid ounce.
(a) What is the probability a fill volume is less than 12 fluid

ounces?
(b) If all cans less than 12.1 or greater than 12.6 ounces are

scrapped, what proportion of cans is scrapped?
(c) Determine specifications that are symmetric about the

mean that include 99% of all cans.

4-51. The time it takes a cell to divide (called mitosis) is
normally distributed with an average time of one hour and a
standard deviation of 5 minutes.
(a) What is the probability that a cell divides in less than

45 minutes?
(b) What is the probability that it takes a cell more than

65 minutes to divide?
(c) What is the time that it takes approximately 99% of all

cells to complete mitosis?

4-52. In the previous exercise, suppose that the mean of the
filling operation can be adjusted easily, but the standard devi-
ation remains at 0.1 ounce.
(a) At what value should the mean be set so that 99.9% of all

cans exceed 12 ounces?
(b) At what value should the mean be set so that 99.9% of all

cans exceed 12 ounces if the standard deviation can be re-
duced to 0.05 fluid ounce?
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118 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-53. The reaction time of a driver to visual stimulus is nor-
mally distributed with a mean of 0.4 seconds and a standard
deviation of 0.05 seconds.
(a) What is the probability that a reaction requires more than

0.5 seconds?
(b) What is the probability that a reaction requires between

0.4 and 0.5 seconds?
(c) What is the reaction time that is exceeded 90% of the

time?

4-54. The speed of a file transfer from a server on campus to
a personal computer at a student’s home on a weekday
evening is normally distributed with a mean of 60 kilobits per
second and a standard deviation of 4 kilobits per second.
(a) What is the probability that the file will transfer at a speed

of 70 kilobits per second or more?
(b) What is the probability that the file will transfer at a speed

of less than 58 kilobits per second?
(c) If the file is 1 megabyte, what is the average time it will

take to transfer the file? (Assume eight bits per byte.)

4-55. The length of an injection-molded plastic case that
holds magnetic tape is normally distributed with a length of
90.2 millimeters and a standard deviation of 0.1 millimeter.
(a) What is the probability that a part is longer than 90.3 mil-

limeters or shorter than 89.7 millimeters?
(b) What should the process mean be set at to obtain the great-

est number of parts between 89.7 and 90.3 millimeters?
(c) If parts that are not between 89.7 and 90.3 millimeters are

scrapped, what is the yield for the process mean that you
selected in part (b)?

4-56. In the previous exercise assume that the process is
centered so that the mean is 90 millimeters and the standard
deviation is 0.1 millimeter. Suppose that 10 cases are meas-
ured, and they are assumed to be independent.
(a) What is the probability that all 10 cases are between 89.7

and 90.3 millimeters?
(b) What is the expected number of the 10 cases that are be-

tween 89.7 and 90.3 millimeters?

4-57. The sick-leave time of employees in a firm in a month
is normally distributed with a mean of 100 hours and a stan-
dard deviation of 20 hours.
(a) What is the probability that the sick-leave time for next

month will be between 50 and 80 hours?
(b) How much time should be budgeted for sick leave if the

budgeted amount should be exceeded with a probability
of only 10%?

4-58. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.
(a) What is the probability that a laser fails before 5000

hours?
(b) What is the life in hours that 95% of the lasers exceed?
(c) If three lasers are used in a product and they are assumed

to fail independently, what is the probability that all three
are still operating after 7000 hours?

4-59. The diameter of the dot produced by a printer is nor-
mally distributed with a mean diameter of 0.002 inch and a
standard deviation of 0.0004 inch.
(a) What is the probability that the diameter of a dot exceeds

0.0026 inch?
(b) What is the probability that a diameter is between 0.0014

and 0.0026 inch?
(c) What standard deviation of diameters is needed so that the

probability in part (b) is 0.995?

4-60. The weight of a sophisticated running shoe is nor-
mally distributed with a mean of 12 ounces and a standard de-
viation of 0.5 ounce.
(a) What is the probability that a shoe weighs more than 13

ounces?
(b) What must the standard deviation of weight be in order for

the company to state that 99.9% of its shoes are less than
13 ounces?

(c) If the standard deviation remains at 0.5 ounce, what must
the mean weight be in order for the company to state that
99.9% of its shoes are less than 13 ounces?

4-7 NORMAL APPROXIMATION TO THE BINOMIAL
AND POISSON DISTRIBUTIONS

We began our section on the normal distribution with the central limit theorem and the nor-
mal distribution as an approximation to a random variable with a large number of trials.
Consequently, it should not be a surprise to learn that the normal distribution can be used
to approximate binomial probabilities for cases in which n is large. The following example
illustrates that for many physical systems the binomial model is appropriate with an ex-
tremely large value for n. In these cases, it is difficult to calculate probabilities by using the
binomial distribution. Fortunately, the normal approximation is most effective in these
cases. An illustration is provided in Fig. 4-19. The area of each bar equals the binomial
probability of x. Notice that the area of bars can be approximated by areas under the nor-
mal density function.
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4-7 NORMAL APPROXIMATION TO THE BINOMIAL AND POISSON DISTRIBUTIONS 119

EXAMPLE 4-17 In a digital communication channel, assume that the number of bits received in error can be
modeled by a binomial random variable, and assume that the probability that a bit is received
in error is . If 16 million bits are transmitted, what is the probability that more than
150 errors occur?

Let the random variable X denote the number of errors. Then X is a binomial random vari-
able and

Clearly, the probability in Example 4-17 is difficult to compute. Fortunately, the normal
distribution can be used to provide an excellent approximation in this example.

P 1X � 1502 � 1 � P1x � 1502 � 1 � a
150

x�0
a16,000,000

x
b 110�52x11 � 10�5216,000,000�x

1 � 10�5

Figure 4-19 Normal
approximation to the
binomial distribution.
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If X is a binomial random variable,

(4-12)

is approximately a standard normal random variable. The approximation is good for

np � 5 and n11 � p2 � 5

Z �
X � np1np11 � p2

Normal
Approximation to

the Binomial
Distribution

Recall that for a binomial variable X, E(X) � np and V(X) � np(1 � p). Consequently, the ex-
pression in Equation 4-12 is nothing more than the formula for standardizing the random vari-
able X. Probabilities involving X can be approximated by using a standard normal distribution.
The approximation is good when n is large relative to p.
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120 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-18 The digital communication problem in the previous example is solved as follows:

Because and n(1 � p) is much larger, the approximation
is expected to work well in this case.

EXAMPLE 4-19 Again consider the transmission of bits in Example 4-18. To judge how well the normal
approximation works, assume only n � 50 bits are to be transmitted and that the probability
of an error is p � 0.1. The exact probability that 2 or less errors occur is

Based on the normal approximation

Even for a sample as small as 50 bits, the normal approximation is reasonable.

If np or n(1 � p) is small, the binomial distribution is quite skewed and the symmetric
normal distribution is not a good approximation. Two cases are illustrated in Fig. 4-20.
However, a correction factor can be used that will further improve the approximation. This
factor is called a continuity correction and it is discussed in Section 4-8 on the CD.

P1X � 22 � P  aX � 5
2.12

�
2 � 5
2.12

b � P1Z � �1.422 � 0.08

P1X � 22 � a50
0
b  0.950 
 a50

1
b  0.110.9492 
 a50

2 b 0.1210.9482 � 0.112

np � 116 � 1062 11 � 10�52 � 160

 � P1Z � �0.792 � P1Z � 0.792 � 0.785

P1X � 1502 � P  a X � 160216011 � 10�52 �
150 � 160216011 � 10�52 b

Figure 4-20 Binomial
distribution is not
symmetrical if p is near
0 or 1.

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.3

0.4

x

f(x)
0.2

n p
10 0.1
10 0.9
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4-7 NORMAL APPROXIMATION TO THE BIOMIAL AND POISSON DISTRIBUTIONS 121

Recall that the binomial distribution is a satisfactory approximation to the hypergeomet-
ric distribution when n, the sample size, is small relative to N, the size of the population from
which the sample is selected. A rule of thumb is that the binomial approximation is effective
if . Recall that for a hypergeometric distribution p is defined as That is,
p is interpreted as the number of successes in the population. Therefore, the normal distribu-
tion can provide an effective approximation of hypergeometric probabilities when n�N � 0.1,
np � 5 and n(1 � p) � 5. Figure 4-21 provides a summary of these guidelines.

Recall that the Poisson distribution was developed as the limit of a binomial distribution as
the number of trials increased to infinity. Consequently, it should not be surprising to find that the
normal distribution can also be used to approximate probabilities of a Poisson random variable.

p � K	N.n	N � 0.1

If X is a Poisson random variable with and 

(4-13)

is approximately a standard normal random variable. The approximation is good for

� � 5

Z �
X � �2�

V1X 2 � �,E1X 2 � �

Normal
Approximation to

the Poisson
Distribution

hypergometric � binomial � normal 
distribution distribution distributionnp � 5n

N
� 0.1

Figure 4-21 Conditions for approximating hypergeometric and binomial probabilities.

n11 � p2 � 5

EXAMPLE 4-20 Assume that the number of asbestos particles in a squared meter of dust on a surface follows
a Poisson distribution with a mean of 1000. If a squared meter of dust is analyzed, what is the
probability that less than 950 particles are found?

This probability can be expressed exactly as

The computational difficulty is clear. The probability can be approximated as

EXERCISES FOR SECTION 4-7

P1X � x2 � P  aZ �
950 � 100011000

b � P1Z � �1.582 � 0.057

P1X � 9502 � a
950

x�0

e�1000x1000

x!

4-61. Suppose that X is a binomial random variable with
and 

(a) Approximate the probability that X is less than or equal
to 70.

(b) Approximate the probability that X is greater than 70 and
less than 90.

p � 0.4.n � 200
4-62. Suppose that X is a binomial random variable with
n � 100 and p � 0.1.
(a) Compute the exact probability that X is less than 4.
(b) Approximate the probability that X is less than 4 and com-

pare to the result in part (a).
(c) Approximate the probability that .8 � X � 12
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122 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-63. The manufacturing of semiconductor chips produces
2% defective chips. Assume the chips are independent and
that a lot contains 1000 chips.
(a) Approximate the probability that more than 25 chips are

defective.
(b) Approximate the probability that between 20 and 30 chips

are defective.

4-64. A supplier ships a lot of 1000 electrical connectors. A
sample of 25 is selected at random, without replacement.
Assume the lot contains 100 defective connectors.
(a) Using a binomial approximation, what is the probability

that there are no defective connectors in the sample?
(b) Use the normal approximation to answer the result in part

(a). Is the approximation satisfactory?
(c) Redo parts (a) and (b) assuming the lot size is 500. Is the nor-

mal approximation to the probability that there are no defec-
tive connectors in the sample satisfactory in this case?

4-65. An electronic office product contains 5000 elec-
tronic components. Assume that the probability that each
component operates without failure during the useful life of
the product is 0.999, and assume that the components fail
independently. Approximate the probability that 10 or more
of the original 5000 components fail during the useful life of
the product.

4-66. Suppose that the number of asbestos particles in a sam-
ple of 1 squared centimeter of dust is a Poisson random variable
with a mean of 1000. What is the probability that 10 squared cen-
timeters of dust contains more than 10,000 particles?

4-67. A corporate Web site contains errors on 50 of 1000
pages. If 100 pages are sampled randomly, without replace-

ment, approximate the probability that at least 1 of the pages
in error are in the sample.

4-68. Hits to a high-volume Web site are assumed to follow
a Poisson distribution with a mean of 10,000 per day.
Approximate each of the following:
(a) The probability of more than 20,000 hits in a day
(b) The probability of less than 9900 hits in a day
(c) The value such that the probability that the number of hits

in a day exceed the value is 0.01

4-69. Continuation of Exercise 4-68.
(a) Approximate the expected number of days in a year (365

days) that exceed 10,200 hits.
(b) Approximate the probability that over a year (365 days)

more than 15 days each have more than 10,200 hits.

4-70. The percentage of people exposed to a bacteria who
become ill is 20%. Assume that people are independent. Assume
that 1000 people are exposed to the bacteria. Approximate each
of the following:
(a) The probability that more than 225 become ill
(b) The probability that between 175 and 225 become ill
(c) The value such that the probability that the number of peo-

ple that become ill exceeds the value is 0.01

4-71. A high-volume printer produces minor print-quality
errors on a test pattern of 1000 pages of text according to a
Poisson distribution with a mean of 0.4 per page.
(a) Why are the number of errors on each page independent

random variables?
(b) What is the mean number of pages with errors (one or more)?
(c) Approximate the probability that more than 350 pages

contain errors (one or more).

4-8 CONTINUITY CORRECTION TO IMPROVE
THE APPROXIMATION (CD ONLY)

4-9 EXPONENTIAL DISTRIBUTION

The discussion of the Poisson distribution defined a random variable to be the number of
flaws along a length of copper wire. The distance between flaws is another random variable
that is often of interest. Let the random variable X denote the length from any starting point on
the wire until a flaw is detected.

As you might expect, the distribution of X can be obtained from knowledge of the
distribution of the number of flaws. The key to the relationship is the following concept. The
distance to the first flaw exceeds 3 millimeters if and only if there are no flaws within a length
of 3 millimeters—simple, but sufficient for an analysis of the distribution of X.

In general, let the random variable N denote the number of flaws in x millimeters of wire.
If the mean number of flaws is per millimeter, N has a Poisson distribution with mean .
We assume that the wire is longer than the value of x. Now,

P1X � x2 � P1N � 02 �
e��x1�x20

0!
� e��x

�x�
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4-9 EXPONENTIAL DISTRIBUTION 123

Therefore,

is the cumulative distribution function of X. By differentiating F(x), the probability density
function of X is calculated to be

The derivation of the distribution of X depends only on the assumption that the flaws in
the wire follow a Poisson process. Also, the starting point for measuring X doesn’t matter
because the probability of the number of flaws in an interval of a Poisson process depends
only on the length of the interval, not on the location. For any Poisson process, the following
general result applies.

f 1x2 � �e��x, x � 0

F1x2 � P1X � x2 � 1 � e��x,  x � 0

The exponential distribution obtains its name from the exponential function in the proba-
bility density function. Plots of the exponential distribution for selected values of are shown
in Fig. 4-22. For any value of , the exponential distribution is quite skewed. The following
results are easily obtained and are left as an exercise.

�
�

The random variable X that equals the distance between successive counts of a
Poisson process with mean is an exponential random variable with parame-
ter The probability density function of X is

(4-14)f 1x2 � �e��x for 0 � x � �

�.
� � 0

Definition

If the random variable X has an exponential distribution with parameter ,

(4-15)� � E1X 2 �
1
�
 and �2 � V1X 2 �

1

�2

�

It is important to use consistent units in the calculation of probabilities, means, and variances
involving exponential random variables. The following example illustrates unit conversions.

EXAMPLE 4-21 In a large corporate computer network, user log-ons to the system can be modeled as a Pois-
son process with a mean of 25 log-ons per hour. What is the probability that there are no log-
ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on. Then, X
has an exponential distribution with log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because is given in log-ons per hour, we express all time
units in hours. That is, 6 minutes � 0.1 hour. The probability requested is shown as the shaded
area under the probability density function in Fig. 4-23. Therefore,

P1X � 0.12 � �  

�

0.1

25e�25x dx � e�2510.12 � 0.082

�
� � 25
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124 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Also, the cumulative distribution function can be used to obtain the same result as follows:

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-
ons per minute and computing the probability that the time until the next log-on exceeds 6
minutes. Try it.

What is the probability that the time until the next log-on is between 2 and 3 minutes?
Upon converting all units to hours,

An alternative solution is

Determine the interval of time such that the probability that no log-on occurs in the inter-
val is 0.90. The question asks for the length of time x such that . Now,

Take the (natural) log of both sides to obtain . Therefore,

x � 0.00421 hour � 0.25 minute

�25x � ln10.902 � �0.1054

P1X � x2 � e�25x � 0.90

P1X � x2 � 0.90

P10.033 � X � 0.052 � F10.052 � F10.0332 � 0.152

P10.033 � X � 0.052 � �
0.05

0.033
 
25e�25x dx � �e�25x ` 0.05

0.033
� 0.152

P1X � 0.12 � 1 � F10.12 � e�2510.12

0
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Figure 4-22 Probability density function of expo-
nential random variables for selected values of .�

0.1 x

f (x)

Figure 4-23 Probability for the expo-
nential distribution in Example 4-21.
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4-9 EXPONENTIAL DISTRIBUTION 125

Furthermore, the mean time until the next log-on is

The standard deviation of the time until the next log-on is

In the previous example, the probability that there are no log-ons in a 6-minute interval is
0.082 regardless of the starting time of the interval. A Poisson process assumes that events oc-
cur uniformly throughout the interval of observation; that is, there is no clustering of events.
If the log-ons are well modeled by a Poisson process, the probability that the first log-on after
noon occurs after 12:06 P.M. is the same as the probability that the first log-on after 3:00 P.M.
occurs after 3:06 P.M. And if someone logs on at 2:22 P.M., the probability the next log-on
occurs after 2:28 P.M. is still 0.082.

Our starting point for observing the system does not matter. However, if there are
high-use periods during the day, such as right after 8:00 A.M., followed by a period of low
use, a Poisson process is not an appropriate model for log-ons and the distribution is not
appropriate for computing probabilities. It might be reasonable to model each of the high-
and low-use periods by a separate Poisson process, employing a larger value for during
the high-use periods and a smaller value otherwise. Then, an exponential distribution with
the corresponding value of can be used to calculate log-on probabilities for the high- and
low-use periods.

Lack of Memory Property
An even more interesting property of an exponential random variable is concerned with con-
ditional probabilities.

EXAMPLE 4-22 Let X denote the time between detections of a particle with a geiger counter and assume that
X has an exponential distribution with minutes. The probability that we detect a par-
ticle within 30 seconds of starting the counter is

In this calculation, all units are converted to minutes. Now, suppose we turn on the geiger
counter and wait 3 minutes without detecting a particle. What is the probability that a particle
is detected in the next 30 seconds?

Because we have already been waiting for 3 minutes, we feel that we are “due.’’ That
is, the probability of a detection in the next 30 seconds should be greater than 0.3. However,
for an exponential distribution, this is not true. The requested probability can be expressed
as the conditional probability that From the definition of conditional
probability,

where

P13 � X � 3.52 � F13.52 � F132 � 31 � e�3.5	1.4 4 � 31 � e�3	1.4 4 � 0.0035

P1X � 3.5 ƒ X � 32 � P13 � X � 3.52	P1X � 32

P1X � 3.5 ƒ X � 32.

P1X � 0.5 minute2 � F10.52 � 1 � e�0.5	1.4 � 0.30

� � 1.4

�

�

� � 1	25 hours � 2.4 minutes

� � 1	25 � 0.04 hour � 2.4 minutes
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126 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

and

Therefore,

After waiting for 3 minutes without a detection, the probability of a detection in the next 30
seconds is the same as the probability of a detection in the 30 seconds immediately after start-
ing the counter. The fact that you have waited 3 minutes without a detection does not change
the probability of a detection in the next 30 seconds.

Example 4-22 illustrates the lack of memory property of an exponential random vari-
able and a general statement of the property follows. In fact, the exponential distribution is the
only continuous distribution with this property.

P1X � 3.5 ƒ X � 32 � 0.035	0.117 � 0.30

P1X � 32 � 1 � F132 � e�3/1.4 � 0.117

For an exponential random variable X,

(4-16)P1X � t1 
 t2 0 X � t12 � P1X � t22

Lack of
Memory
Property

Figure 4-24 graphically illustrates the lack of memory property. The area of region A divided
by the total area under the probability density function equals

. The area of region C divided by the area equals The
lack of memory property implies that the proportion of the total area that is in A equals the
proportion of the area in C and D that is in C. The mathematical verification of the lack of
memory property is left as a mind-expanding exercise.

The lack of memory property is not that surprising when you consider the development
of a Poisson process. In that development, we assumed that an interval could be partitioned
into small intervals that were independent. These subintervals are similar to independent
Bernoulli trials that comprise a binomial process; knowledge of previous results does not af-
fect the probabilities of events in future subintervals. An exponential random variable is the
continuous analog of a geometric random variable, and they share a similar lack of memory
property.

The exponential distribution is often used in reliability studies as the model for the
time until failure of a device. For example, the lifetime of a semiconductor chip might be
modeled as an exponential random variable with a mean of 40,000 hours. The lack of

P1X � t1 
 t2 0  X � t12.C 
 DP1X � t22
1A 
 B 
 C 
 D � 12

Figure 4-24 Lack of
memory property of
an exponential
distribution. t2 x

C D
B

A

t1 t1 + t2

f (x)
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4-9 EXPONENTIAL DISTRIBUTION 127

memory property of the exponential distribution implies that the device does not wear out.
That is, regardless of how long the device has been operating, the probability of a failure
in the next 1000 hours is the same as the probability of a failure in the first 1000 hours of
operation. The lifetime L of a device with failures caused by random shocks might be ap-
propriately modeled as an exponential random variable. However, the lifetime L of a
device that suffers slow mechanical wear, such as bearing wear, is better modeled by a dis-
tribution such that increases with t. Distributions such as the Weibull
distribution are often used, in practice, to model the failure time of this type of device. The
Weibull distribution is presented in a later section.

EXERCISES FOR SECTION 4-9

P1L � t 
 �t 0 L � t2

4-72. Suppose X has an exponential distribution with � � 2.
Determine the following:
(a) (b)
(c) (d)

(e) Find the value of x such that 

4-73. Suppose X has an exponential distribution with mean
equal to 10. Determine the following:
(a)
(b)
(c)

(d) Find the value of x such that 

4-74. Suppose the counts recorded by a geiger counter follow
a Poisson process with an average of two counts per minute.
(a) What is the probability that there are no counts in a 30-

second interval?
(b) What is the probability that the first count occurs in less

than 10 seconds?
(c) What is the probability that the first count occurs between

1 and 2 minutes after start-up?

4-75. Suppose that the log-ons to a computer network fol-
low a Poisson process with an average of 3 counts per minute.
(a) What is the mean time between counts?
(b) What is the standard deviation of the time between counts?
(c) Determine x such that the probability that at least one

count occurs before time x minutes is 0.95.

4-76. The time to failure (in hours) for a laser in a cytome-
try machine is modeled by an exponential distribution with

(a) What is the probability that the laser will last at least
20,000 hours?

(b) What is the probability that the laser will last at most
30,000 hours?

(c) What is the probability that the laser will last between
20,000 and 30,000 hours?

4-77. The time between calls to a plumbing supply business
is exponentially distributed with a mean time between calls of
15 minutes.
(a) What is the probability that there are no calls within a 30-

minute interval?

� � 0.00004.

P1X � x2 � 0.95.

P1X � 302
P1X � 202
P1X � 102

P1X � x2 � 0.05.

P11 � X � 22P1X � 12
P1X � 22P1X � 02

(b) What is the probability that at least one call arrives within
a 10-minute interval?

(c) What is the probability that the first call arrives within 5
and 10 minutes after opening?

(d) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.90.

4-78. The life of automobile voltage regulators has an expo-
nential distribution with a mean life of six years. You purchase
an automobile that is six years old, with a working voltage
regulator, and plan to own it for six years.
(a) What is the probability that the voltage regulator fails dur-

ing your ownership?
(b) If your regulator fails after you own the automobile three

years and it is replaced, what is the mean time until the
next failure?

4-79. The time to failure (in hours) of fans in a personal com-
puter can be modeled by an exponential distribution with

(a) What proportion of the fans will last at least 10,000 hours?
(b) What proportion of the fans will last at most 7000 hours?

4-80. The time between the arrival of electronic messages at
your computer is exponentially distributed with a mean of two
hours.
(a) What is the probability that you do not receive a message

during a two-hour period?
(b) If you have not had a message in the last four hours, what

is the probability that you do not receive a message in the
next two hours?

(c) What is the expected time between your fifth and sixth
messages?

4-81. The time between arrivals of taxis at a busy intersec-
tion is exponentially distributed with a mean of 10 minutes.
(a) What is the probability that you wait longer than one hour

for a taxi?
(b) Suppose you have already been waiting for one hour for a

taxi, what is the probability that one arrives within the
next 10 minutes?

4-82. Continuation of Exercise 4-81.
(a) Determine x such that the probability that you wait more

than x minutes is 0.10.

� � 0.0003.
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128 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(b) Determine x such that the probability that you wait less
than x minutes is 0.90.

(c) Determine x such that the probability that you wait less
than x minutes is 0.50.

4-83. The distance between major cracks in a highway fol-
lows an exponential distribution with a mean of 5 miles.
(a) What is the probability that there are no major cracks in a

10-mile stretch of the highway?
(b) What is the probability that there are two major cracks in

a 10-mile stretch of the highway?
(c) What is the standard deviation of the distance between

major cracks?

4-84. Continuation of Exercise 4-83.
(a) What is the probability that the first major crack occurs

between 12 and 15 miles of the start of inspection?
(b) What is the probability that there are no major cracks in

two separate 5-mile stretches of the highway?
(c) Given that there are no cracks in the first 5 miles in-

spected, what is the probability that there are no major
cracks in the next 10 miles inspected?

4-85. The lifetime of a mechanical assembly in a vibration
test is exponentially distributed with a mean of 400 hours.
(a) What is the probability that an assembly on test fails in

less than 100 hours?
(b) What is the probability that an assembly operates for more

than 500 hours before failure?
(c) If an assembly has been on test for 400 hours without a fail-

ure, what is the probability of a failure in the next 100 hours?

4-86. Continuation of Exercise 4-85.
(a) If 10 assemblies are tested, what is the probability that at

least one fails in less than 100 hours? Assume that the as-
semblies fail independently.

(b) If 10 assemblies are tested, what is the probability that all
have failed by 800 hours? Assume the assemblies fail
independently.

4-87. When a bus service reduces fares, a particular trip
from New York City to Albany, New York, is very popular.
A small bus can carry four passengers. The time between calls
for tickets is exponentially distributed with a mean of 30 min-
utes. Assume that each call orders one ticket. What is the prob-
ability that the bus is filled in less than 3 hours from the time
of the fare reduction?

4-88. The time between arrivals of small aircraft at a county
airport is exponentially distributed with a mean of one hour.
What is the probability that more than three aircraft arrive
within an hour?

4-89. Continuation of Exercise 4-88.
(a) If 30 separate one-hour intervals are chosen, what is the

probability that no interval contains more than three arrivals?
(b) Determine the length of an interval of time (in hours) such

that the probability that no arrivals occur during the inter-
val is 0.10.

4-90. The time between calls to a corporate office is expo-
nentially distributed with a mean of 10 minutes.
(a) What is the probability that there are more than three calls

in one-half hour?
(b) What is the probability that there are no calls within one-

half hour?
(c) Determine x such that the probability that there are no

calls within x hours is 0.01.

4-91. Continuation of Exercise 4-90.
(a) What is the probability that there are no calls within a two-

hour interval?
(b) If four nonoverlapping one-half hour intervals are se-

lected, what is the probability that none of these intervals
contains any call?

(c) Explain the relationship between the results in part (a)
and (b).

4-92. If the random variable X has an exponential distribu-
tion with mean , determine the following:
(a) (b)

(c)
(d) How do the results depend on ?

4-93. Assume that the flaws along a magnetic tape follow a
Poisson distribution with a mean of 0.2 flaw per meter. Let X
denote the distance between two successive flaws.
(a) What is the mean of X ?
(b) What is the probability that there are no flaws in 10 con-

secutive meters of tape?
(c) Does your answer to part (b) change if the 10 meters are

not consecutive?
(d) How many meters of tape need to be inspected so that the

probability that at least one flaw is found is 90%?

4-94. Continuation of Exercise 4-93. (More diff icult ques-
tions.)
(a) What is the probability that the first time the distance be-

tween two flaws exceeds 8 meters is at the fifth flaw?
(b) What is the mean number of flaws before a distance be-

tween two flaws exceeds 8 meters?

4-95. Derive the formula for the mean and variance of an
exponential random variable.

�
P1X � 3�2

P1X � 2�2P1X � �2 �

4-10 ERLANG AND GAMMA DISTRIBUTIONS

4-10.1 Erlang Distribution

An exponential random variable describes the length until the first count is obtained in a
Poisson process. A generalization of the exponential distribution is the length until r counts
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4-10 ERLANG AND GAMMA DISTRIBUTIONS 129

occur in a Poisson process. The random variable that equals the interval length until r counts
occur in a Poisson process has an Erlang random variable.

EXAMPLE 4-23 The failures of the central processor units of large computer systems are often modeled as a
Poisson process. Typically, failures are not caused by components wearing out, but by more
random failures of the large number of semiconductor circuits in the units. Assume that the
units that fail are immediately repaired, and assume that the mean number of failures per hour
is 0.0001. Let X denote the time until four failures occur in a system. Determine the probabil-
ity that X exceeds 40,000 hours.

Let the random variable N denote the number of failures in 40,000 hours of operation.
The time until four failures occur exceeds 40,000 hours if and only if the number of failures
in 40,000 hours is three or less. Therefore, 

The assumption that the failures follow a Poisson process implies that N has a Poisson distri-
bution with

Therefore,

The cumulative distribution function of a general Erlang random variable X can be obtained
from and can be determined as in the previous exam-
ple. Then, the probability density function of X can be obtained by differentiating the cumula-
tive distribution function and using a great deal of algebraic simplification. The details are left
as an exercise. In general, we can obtain the following result.

P1X � x2P1X � x2 � 1 � P1X � x2,

P1X � 40,0002 � P1N � 32 � a
3

k�0

e�44k

k!
� 0.433

E1N 2 � 40,00010.00012 � 4 failures per 40,000 hours

P1X � 40,0002 � P1N � 32

The random variable X that equals the interval length until r counts occur in a
Poisson process with mean has an Erlang random variable with parameters

and r. The probability density function of X is

(4-17)f 1x2 �
�rxr�1e��x

1r � 12!
, for x � 0 and r � 1, 2, p

�
� � 0

Definition

Sketches of the Erlang probability density function for several values of r and are
shown in Fig. 4-25. Clearly, an Erlang random variable with is an exponential
random variable. Probabilities involving Erlang random variables are often determined by
computing a summation of Poisson random variables as in Example 4-23. The probability
density function of an Erlang random variable can be used to determine probabilities;
however, integrating by parts is often necessary. As was the case for the exponential
distribution, one must be careful to define the random variable and the parameter in
consistent units.

r � 1
�
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130 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-24 An alternative approach to computing the probability requested in Example 4-24 is to inte-
grate the probability density function of X. That is,

where Integration by parts can be used to verify the result obtained
previously.

An Erlang random variable can be thought of as the continuous analog of a negative
binomial random variable. A negative binomial random variable can be expressed as the sum
of r geometric random variables. Similarly, an Erlang random variable can be represented as
the sum of r exponential random variables. Using this conclusion, we can obtain the follow-
ing plausible result. Sums of random variables are studied in Chapter 5.

r � 4 and � � 0.0001.

P1X � 40,0002 � �
�

40,000
 
f 1x2 dx � �

�

40,000

 
�rxr�1e��x

1r � 12!
 dx

0

0.0

0.4

0.8
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1.6

2.0
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x

f (x)

1
5
5

1
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λr

Figure 4-25 Erlang probability density functions
for selected values of r and .�

If X is an Erlang random variable with parameters and r,

(4-18)� � E1X 2 � r�� and �2 � V1X2 � r��2

�

4-10.2 Gamma Distribution

The Erlang distribution is a special case of the gamma distribution. If the parameter r of
an Erlang random variable is not an integer, but , the random variable has a gamma
distribution. However, in the Erlang density function, the parameter r appears as r factorial.

r � 0
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4-10 ERLANG AND GAMMA DISTRIBUTIONS 131

It can be shown that the integral in the definition of is finite. Furthermore, by using inte-
gration by parts it can be shown that

This result is left as an exercise. Therefore, if r is a positive integer (as in the Erlang distribution),

Also, and it can be shown that . The gamma function can be in-
terpreted as a generalization to noninteger values of r of the term that is used in the
Erlang probability density function.

Now the gamma probability density function can be stated.

1r � 12!�11	22 � 
1	2�112 � 0! � 1

�1r2 � 1r � 12!

�1r2 � 1r � 12�1r � 12

�1r2

Sketches of the gamma distribution for several values of and r are shown in Fig. 4-26. It can
be shown that f(x) satisfies the properties of a probability density function, and the following
result can be obtained. Repeated integration by parts can be used, but the details are lengthy.

�

Although the gamma distribution is not frequently used as a model for a physical system,
the special case of the Erlang distribution is very useful for modeling random experiments. The
exercises provide illustrations. Furthermore, the chi-squared distribution is a special case of

The gamma function is

(4-19)�1r2 � �
�

0
 
xr�1e�x dx, for r � 0

Definition

The random variable X with probability density function

(4-20)

has a gamma random variable with parameters . If r is an integer,
X has an Erlang distribution.

� � 0 and r � 0

f 1x2 �
�rxr�1e 

��x

�1r2 , for x � 0

Definition

If X is a gamma random variable with parameters and r,

(4-21)� � E1X 2 � r	� and �2 � V1X 2 � r	�2

�

Therefore, to define a gamma random variable, we require a generalization of the factorial
function.
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132 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

the gamma distribution in which and r equals one of the values 1�2, 1, 3�2, 2, p . This
distribution is used extensively in interval estimation and tests of hypotheses that are discussed
in subsequent chapters.

EXERCISES FOR SECTION 4-10

� � 1	2

Figure 4-26 Gamma probability density functions
for selected values of and r.�
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4-96. Calls to a telephone system follow a Poisson distribu-
tion with a mean of five calls per minute.
(a) What is the name applied to the distribution and parame-

ter values of the time until the tenth call?
(b) What is the mean time until the tenth call?
(c) What is the mean time between the ninth and tenth calls?

4-97. Continuation of Exercise 4-96.
(a) What is the probability that exactly four calls occur within

one minute?
(b) If 10 separate one-minute intervals are chosen, what is the

probability that all intervals contain more than two calls?

4-98. Raw materials are studied for contamination. Suppose
that the number of particles of contamination per pound of
material is a Poisson random variable with a mean of 0.01 par-
ticle per pound.
(a) What is the expected number of pounds of material re-

quired to obtain 15 particles of contamination?
(b) What is the standard deviation of the pounds of materials

required to obtain 15 particles of contamination?

4-99. The time between failures of a laser in a cytogenics ma-
chine is exponentially distributed with a mean of 25,000 hours.
(a) What is the expected time until the second failure? 

(b) What is the probability that the time until the third failure
exceeds 50,000 hours?

4-100. In a data communication system, several messages
that arrive at a node are bundled into a packet before they
are transmitted over the network. Assume the messages ar-
rive at the node according to a Poisson process with 
messages per minute. Five messages are used to form a
packet.
(a) What is the mean time until a packet is formed, that is, un-

til five messages arrived at the node?
(b) What is the standard deviation of the time until a packet is

formed?
(c) What is the probability that a packet is formed in less than

10 seconds?
(d) What is the probability that a packet is formed in less than

5 seconds?

4-101. Errors caused by contamination on optical disks oc-
cur at the rate of one error every bits. Assume the errors
follow a Poisson distribution.
(a) What is the mean number of bits until five errors occur?
(b) What is the standard deviation of the number of bits until

five errors occur?

105

� � 30
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4-11 WEIBULL DISTRIBUTION 133

(c) The error-correcting code might be ineffective if there are
three or more errors within bits. What is the probabil-
ity of this event?

4-102. Calls to the help line of a large computer distributor
follow a Possion distribution with a mean of 20 calls per minute.
(a) What is the mean time until the one-hundredth call?
(b) What is the mean time between call numbers 50 and 80?
(c) What is the probability that three or more calls occur

within 15 seconds?

4-103. The time between arrivals of customers at an auto-
matic teller machine is an exponential random variable with a
mean of 5 minutes.
(a) What is the probability that more than three customers

arrive in 10 minutes?
(b) What is the probability that the time until the fifth cus-

tomer arrives is less than 15 minutes?

105
4-104. The time between process problems in a manufac-
turing line is exponentially distributed with a mean of 30 days.
(a) What is the expected time until the fourth problem?
(b) What is the probability that the time until the fourth prob-

lem exceeds 120 days?

4-105. Use the properties of the gamma function to evaluate
the following:
(a) (b)
(c)

4-106. Use integration by parts to show that 

4-107. Show that the gamma density function in-
tegrates to 1.

4-108. Use the result for the gamma distribution to determine
the mean and variance of a chi-square distribution with r � 7�2.

f 1x, �, r2
�1r � 12.

�1r2 �  1r � 12
�19�22

�15�22�162

4-11 WEIBULL DISTRIBUTION

As mentioned previously, the Weibull distribution is often used to model the time until failure
of many different physical systems. The parameters in the distribution provide a great deal of
flexibility to model systems in which the number of failures increases with time (bearing
wear), decreases with time (some semiconductors), or remains constant with time (failures
caused by external shocks to the system).

The flexibility of the Weibull distribution is illustrated by the graphs of selected probability
density functions in Fig. 4-27. By inspecting the probability density function, it is seen that
when , the Weibull distribution is identical to the exponential distribution.

The cumulative distribution function is often used to compute probabilities. The follow-
ing result can be obtained.

� � 1

The random variable X with probability density function

(4-22)

is a Weibull random variable with scale parameter and shape parameter � � 0.� � 0

f 1x2 �
�

�
 ax

�
b��1

 exp c�ax

�
b� d ,  for x � 0

Definition

If X has a Weibull distribution with parameters and , then the cumulative distri-
bution function of X is

(4-23)F1x2 � 1 � e
�ax

�
b
�

��
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Also, the following result can be obtained.

134 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

If X has a Weibull distribution with parameters and ,

(4-24)

	 � E1x2 � ��  a1 

1
�
b and �2 � V 1x2 � �2� 

 

 a1 

2
�
b � �2 c� 

 a1 

1
�
b d 2

��

EXAMPLE 4-25 The time to failure (in hours) of a bearing in a mechanical shaft is satisfactorily modeled as a
Weibull random variable with Determine the mean time until
failure.

From the expression for the mean,

Determine the probability that a bearing lasts at least 6000 hours. Now 

Consequently, only 33.4% of all bearings last at least 6000 hours.

P1x � 60002 � 1 � F160002 � exp� c a6000
5000

b1�2 d � e�1.095 � 0.334

E1X 2 � 5000� 31 
 11�0.52 4 � 5000� 33 4 � 5000 � 2! � 10,000 hours

� � 1�2, and � � 5000 hours.

Figure 4-27 Weibull probability density functions
for selected values of and .��
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4-12 LOGNORMAL DISTRIBUTION 135

4-109. Suppose that X has a Weibull distribution with
and hours. Determine the mean and vari-

ance of X.

4-110. Suppose that X has a Weibull distribution 
and hours. Determine the following:
(a) (b)

4-111. Assume that the life of a roller bearing follows a
Weibull distribution with parameters and 
hours.
(a) Determine the probability that a bearing lasts at least 8000

hours.
(b) Determine the mean time until failure of a bearing.
(c) If 10 bearings are in use and failures occur independently,

what is the probability that all 10 bearings last at least
8000 hours?

4-112. The life (in hours) of a computer processing unit
(CPU) is modeled by a Weibull distribution with parameters

and hours.
(a) Determine the mean life of the CPU.
(b) Determine the variance of the life of the CPU.
(c) What is the probability that the CPU fails before 500

hours?

� � 900� � 3

� � 10,000� � 2

P1X � 50002P1X � 10,0002
� � 100

� � 0.2

� � 100� � 0.2
4-113. Assume the life of a packaged magnetic disk exposed
to corrosive gases has a Weibull distribution with and
the mean life is 600 hours.
(a) Determine the probability that a packaged disk lasts at

least 500 hours.
(b) Determine the probability that a packaged disk fails be-

fore 400 hours.

4-114. The life of a recirculating pump follows a Weibull
distribution with parameters , and hours.
(a) Determine the mean life of a pump.
(b) Determine the variance of the life of a pump.
(c) What is the probability that a pump will last longer than its

mean?

4-115. The life (in hours) of a magnetic resonance imagin-
ing machine (MRI) is modeled by a Weibull distribution with
parameters and hours.
(a) Determine the mean life of the MRI.
(b) Determine the variance of the life of the MRI.
(c) What is the probability that the MRI fails before 250 hours?

4-116. If X is a Weibull random variable with � � 1, and
� � 1000, what is another name for the distribution of X and
what is the mean of X ?

� � 500� � 2

� � 700� � 2

� � 0.5

4-12 LOGNORMAL DISTRIBUTION

Variables in a system sometimes follow an exponential relationship as . If the
exponent is a random variable, say is a random variable and the distribu-
tion of X is of interest. An important special case occurs when W has a normal distribution.
In that case, the distribution of X is called a lognormal distribution. The name follows
from the transformation ln . That is, the natural logarithm of X is normally dis-
tributed.

Probabilities for X are obtained from the transformation to W, but we need to recognize
that the range of X is . Suppose that W is normally distributed with mean and variance

; then the cumulative distribution function for X is

for , where Z is a standard normal random variable. Therefore, Appendix Table II can be
used to determine the probability. Also, 

The probability density function of X can be obtained from the derivative of F(x).
This derivative is applied to the last term in the expression for F(x), the integral of the stan-
dard normal density function. Furthermore, from the probability density function, the
mean and variance of X can be derived. The details are omitted, but a summary of results
follows.

F1x2 � 0, for x � 0.
x � 0

� P cZ �
ln 1x2 � �

� d � � c ln 1x2 � �
� d

F1x2 � P 3X � x 4 � P 3exp1W 2 � x 4 � P 3W � ln 1x2 4
�2

�10, �2

1X 2 � W

W, X � exp 1W 2 x � exp1w2

EXERCISES FOR SECTION 4-11
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136 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The parameters of a lognormal distribution are and , but care is needed to interpret that
these are the mean and variance of the normal random variable W. The mean and variance of
X are the functions of these parameters shown in (4-25). Figure 4-28 illustrates lognormal dis-
tributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran-
dom variable. For example, this is a common distribution for the lifetime of a semiconductor
laser. A Weibull distribution can also be used in this type of application, and with an appro-
priate choice for parameters, it can approximate a selected lognormal distribution. However,
a lognormal distribution is derived from a simple exponential function of a normal random
variable, so it is easy to understand and easy to evaluate probabilities.

EXAMPLE 4-26 The lifetime of a semiconductor laser has a lognormal distribution with hours and
hours. What is the probability the lifetime exceeds 10,000 hours?

From the cumulative distribution function for X

� �  a ln 110,0002 � 10

1.5
b � 1 � � 1�0.522 � 1 � 0.30 � 0.70

P1X � 10,0002 � 1 � P 3exp 1W 2 � 10,000 4 � 1 � P 3W � ln 110,0002 4

� � 1.5
� � 10

�2�

Let W have a normal distribution mean and variance ; then is a log-
normal random variable with probability density function

The mean and variance of X are

(4-25)E1X 2 � e�
�2	2  and  V1X 2 � e2�
�2

 1e�2

� 12

f 1x2 �
1

x� 12

 exp c� 1ln x � �22

2�2 d  0 � x � �

X � exp1W2�2�
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Figure 4-28 Lognormal probability density functions with
for selected values of .�2� � 0
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4-12 LOGNORMAL DISTRIBUTION 137

What lifetime is exceeded by 99% of lasers? The question is to determine x such that
. Therefore, 

From Appendix Table II, when . Therefore, 

Determine the mean and standard deviation of lifetime. Now,

so the standard deviation of X is 197,661.5 hours. Notice that the standard deviation of life-
time is large relative to the mean.

EXERCISES FOR SECTION 4-12

V1X 2 � e2�
�21e�2

� 12 � exp 120 
 2.252 3exp 12.252 � 1 4 � 39,070,059,886.6

E1X 2 � e�
�2	2 � exp 110 
 1.1252 � 67,846.3

ln 1x2 � 10

1.5
� �2.33 and x � exp 16.5052 � 668.48 hours.

z � �2.33 1 � �1z2 � 0.99

P1X � x2 � P 3exp 1W 2 � x 4 � P 3W � ln 1x2 4 � 1 � � a ln 1x2 � 10

1.5
b � 0.99

P1X � x2 � 0.99

4-117. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-118. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-119. Suppose that X has a lognormal distribution with pa-
rameters and . Determine the following:
(a)
(b) The conditional probability that given that

(c) What does the difference between the probabilities in
parts (a) and (b) imply about lifetimes of lognormal ran-
dom variables?

4-120. The length of time (in seconds) that a user views a
page on a Web site before moving to another page is a lognor-
mal random variable with parameters and .
(a) What is the probability that a page is viewed for more than

10 seconds?
(b) What is the length of time that 50% of users view the page?
(c) What is the mean and standard deviation of the time until

a user moves from the page?

4-121. Suppose that X has a lognormal distribution and that
the mean and variance of X are 100 and 85,000, respectively.

�2 � 1� � 0.5

X � 1000
X � 1500

P1X � 5002
�2 � 4� � 2

P1X � x2 � 0.1
P1500 � X � 10002

�2 � 9� � �2

P1X � x2 � 0.95
P1X � 13,3002

�2 � 9� � 5
Determine the parameters and of the lognormal distribu-
tion. (Hint: define and and write two
equations in terms of x and y.)

4-122. The lifetime of a semiconductor laser has a log-
normal distribution, and it is known that the mean and stan-
dard deviation of lifetime are 10,000 and 20,000, respec-
tively.
(a) Calculate the parameters of the lognormal distribution
(b) Determine the probability that a lifetime exceeds 10,000

hours
(c) Determine the lifetime that is exceeded by 90% of lasers

4-123. Derive the probability density function of a lognor-
mal random variable from the derivative of the cumulative
distribution function.

Supplemental Exercises

4-124. Suppose that for 
Determine the following:
(a)
(b)

(c)

4-125. Continuation of Exercise 4-124. Determine the
cumulative distribution function of the random variable.

4-126. Continuation of Exercise 4-124. Determine the
mean and variance of the random variable.

P12.5 � X � 3.52
P1X � 32
P1X � 2.52

2 � x � 4.f 1x2 � 0.5x � 1

y � exp 1�22x � exp 1�2 �2�
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138 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-127. The time between calls is exponentially distributed
with a mean time between calls of 10 minutes.
(a) What is the probability that the time until the first call is

less than 5 minutes?
(b) What is the probability that the time until the first call is

between 5 and 15 minutes?
(c) Determine the length of an interval of time such that the

probability of at least one call in the interval is 0.90.

4-128. Continuation of Exercise 4-127.
(a) If there has not been a call in 10 minutes, what is the proba-

bility that the time until the next call is less than 5 minutes?
(b) What is the probability that there are no calls in the inter-

vals from 10:00 to 10:05, from 11:30 to 11:35, and from
2:00 to 2:05?

4-129. Continuation of Exercise 4-127.
(a) What is the probability that the time until the third call is

greater than 30 minutes?
(b) What is the mean time until the fifth call?

4-130. The CPU of a personal computer has a lifetime that
is exponentially distributed with a mean lifetime of six years.
You have owned this CPU for three years. What is the proba-
bility that the CPU fails in the next three years?

4-131. Continuation of Exercise 4-130. Assume that your
corporation has owned 10 CPUs for three years, and assume
that the CPUs fail independently. What is the probability that
at least one fails within the next three years?

4-132. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-133. Suppose that X has a lognormal distribution and that
the mean and variance of X are 50 and 4000, respectively.
Determine the following:

(a) The parameters and of the lognormal distribution
(b) The probability that X is less than 150

4-134. Asbestos fibers in a dust sample are identified by an
electron microscope after sample preparation. Suppose that
the number of fibers is a Poisson random variable and the
mean number of fibers per squared centimeter of surface dust
is 100. A sample of 800 square centimeters of dust is analyzed.
Assume a particular grid cell under the microscope represents
1/160,000 of the sample.
(a) What is the probability that at least one fiber is visible in

the grid cell?
(b) What is the mean of the number of grid cells that need to

be viewed to observe 10 that contain fibers?
(c) What is the standard deviation of the number of grid cells

that need to be viewed to observe 10 that contain fibers?

4-135. Without an automated irrigation system, the height
of plants two weeks after germination is normally distributed
with a mean of 2.5 centimeters and a standard deviation of 0.5
centimeters.

�2�

P1X � x2 � 0.05
P110 � X � 502

�2 � 4� � 0

(a) What is the probability that a plant’s height is greater than
2.25 centimeters?

(b) What is the probability that a plant’s height is between 2.0
and 3.0 centimeters?

(c) What height is exceeded by 90% of the plants?

4-136. Continuation of Exercise 4-135. With an automated
irrigation system, a plant grows to a height of 3.5 centimeters
two weeks after germination.
(a) What is the probability of obtaining a plant of this height or

greater from the distribution of heights in Exercise 4-135.
(b) Do you think the automated irrigation system increases

the plant height at two weeks after germination?

4-137. The thickness of a laminated covering for a wood
surface is normally distributed with a mean of 5 millimeters
and a standard deviation of 0.2 millimeter.
(a) What is the probability that a covering thickness is greater

than 5.5 millimeters?
(b) If the specifications require the thickness to be between

4.5 and 5.5 millimeters, what proportion of coverings do
not meet specifications?

(c) The covering thickness of 95% of samples is below what
value?

4-138. The diameter of the dot produced by a printer is nor-
mally distributed with a mean diameter of 0.002 inch.
Suppose that the specifications require the dot diameter to be
between 0.0014 and 0.0026 inch. If the probability that a dot
meets specifications is to be 0.9973, what standard deviation
is needed?

4-139. Continuation of Exercise 4-138. Assume that the stan-
dard deviation of the size of a dot is 0.0004 inch. If the proba-
bility that a dot meets specifications is to be 0.9973, what spec-
ifications are needed? Assume that the specifications are to be
chosen symmetrically around the mean of 0.002.

4-140. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.
(a) What is the probability that a laser fails before 5,800

hours?
(b) What is the life in hours that 90% of the lasers exceed?

4-141. Continuation of Exercise 4-140. What should the
mean life equal in order for 99% of the lasers to exceed 10,000
hours before failure?

4-142. Continuation of Exercise 4-140. A product contains
three lasers, and the product fails if any of the lasers fails.
Assume the lasers fail independently. What should the mean
life equal in order for 99% of the products to exceed 10,000
hours before failure?

4-143. Continuation of Exercise 140. Rework parts (a) and
(b). Assume that the lifetime is an exponential random vari-
able with the same mean.

4-144. Continuation of Exercise 4-140. Rework parts (a)
and (b). Assume that the lifetime is a lognormal random vari-
able with the same mean and standard deviation.
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4-12 LOGNORMAL DISTRIBUTION 139

4-145. A square inch of carpeting contains 50 carpet fibers.
The probability of a damaged fiber is 0.0001. Assume the
damaged fibers occur independently.
(a) Approximate the probability of one or more damaged

fibers in 1  square yard of carpeting.
(b) Approximate the probability of four or more damaged

fibers in 1 square yard of carpeting.

4-146. An airline makes 200 reservations for a flight that
holds 185 passengers. The probability that a passenger arrives

for the flight is 0.9 and the passengers are assumed to be inde-
pendent.
(a) Approximate the probability that all the passengers that

arrive can be seated.
(b) Approximate the probability that there are empty seats.
(c) Approximate the number of reservations that the airline

should make so that the probability that everyone who ar-
rives can be seated is 0.95. [Hint: Successively try values
for the number of reservations.]

4-147. The steps in this exercise lead to the probabil-
ity density function of an Erlang random variable X with
parameters and 

(a) Use the Poisson distribution to express .
(b) Use the result from part (a) to determine the cumu-

lative distribution function of X.
(c) Differentiate the cumulative distribution function in

part (b) and simplify to obtain the probability den-
sity function of X.

4-148. A bearing assembly contains 10 bearings. The
bearing diameters are assumed to be independent and
normally distributed with a mean of 1.5 millimeters and
a standard deviation of 0.025 millimeter. What is the
probability that the maximum diameter bearing in the
assembly exceeds 1.6 millimeters?

4-149. Let the random variable X denote a measure-
ment from a manufactured product. Suppose the target
value for the measurement is m. For example, X could
denote a dimensional length, and the target might be 10
millimeters. The quality loss of the process producing
the product is defined to be the expected value of

, where k is a constant that relates a devia-
tion from target to a loss measured in dollars.
(a) Suppose X is a continuous random variable with

and . What is the quality loss
of the process?

(b) Suppose X is a continuous random variable with
and . What is the quality loss

of the process?

4-150. The lifetime of an electronic amplifier is mod-
eled as an exponential random variable. If 10% of the

amplifiers have a mean of 20,000 hours and the remain-
ing amplifiers have a mean of 50,000 hours, what pro-
portion of the amplifiers fail before 60,000 hours?

4-151. Lack of Memory Property. Show that for
an exponential random variable X, 

4-152. A process is said to be of six-sigma quality if
the process mean is at least six standard deviations from
the nearest specification. Assume a normally distributed
measurement.
(a) If a process mean is centered between the upper and

lower specifications at a distance of six standard de-
viations from each, what is the probability that a
product does not meet specifications? Using the
result that 0.000001 equals one part per million,
express the answer in parts per million.

(b) Because it is difficult to maintain a process mean
centered between the specifications, the probability
of a product not meeting specifications is often cal-
culated after assuming the process shifts. If the
process mean positioned as in part (a) shifts upward
by 1.5 standard deviations, what is the probability
that a product does not meet specifications? Express
the answer in parts per million.

(c) Rework part (a). Assume that the process mean is
at a distance of three standard deviations.

(d) Rework part (b). Assume that the process mean is at
a distance of three standard deviations and then
shifts upward by 1.5 standard deviations.

(e) Compare the results in parts (b) and (d) and comment.

X � t12 � P1X � t22
P1X � t1 
 t2 0

V1X2 � �2E1X2 � �

V1X2 � �2E1X2 � m

$k1X � m22

P1X � x2
r � 1, 2, p .

r, f 1x2 � �rxr�1e��x	 1r � 12!, x � 0,�

MIND-EXPANDING EXERCISES
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In the E-book, click on any
term or concept below to
go to that subject.

Chi-squared 
distribution

Continuous uniform
distribution

Cumulative probability
distribution function-
continuous random
variable

Erlang distribution
Exponential distribution

Gamma distribution
Lack of memory 

property-continuous
random variable

Lognormal 
distribution

Mean-continuous
random variable

Mean-function of a
continuous random
variable

Normal approximation to
binomial and Poisson
probabilities

Normal distribution
Probability density

function
Probability distribution-

continuous random
variable

Standard deviation-
continuous random
variable

Standard normal
distribution

Standardizing
Variance-continuous 

random variable
Weibull distribution

CD MATERIAL
Continuity correction

IMPORTANT TERMS AND CONCEPTS
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4-1

Mean and Variance of the Normal Distribution (CD Only)
In the derivations below, the mean and variance of a normal random variable are shown

to be � and �2, respectively. The mean of x is

By making the change of variable , the integral becomes

The first integral in the expression above equals 1 because is a probability density

function and the second integral is found to be 0 by either formally making the change of vari-
able u � �y2�2 or noticing the symmetry of the integrand about y � 0. Therefore, E(X) � �. 

The variance of X is

By making the change of variable , the integral becomes

Upon integrating by parts with and V(X) is found to be .

4-8 CONTINUITY CORRECTIONS TO IMPROVE
THE APPROXIMATION

From Fig. 4-19 it can be seen that a probability such as P(3 � X � 7) is better approximated
by the area under the normal curve from 2.5 to 7.5. This observation provides a method to im-
prove the approximation of binomial probabilities. Because a continuous normal distribution
is used to approximate a discrete binomial distribution, the modification is referred to as a
continuity correction.

�2dv � y  
e�y2�222�

 dy,u � y

V1X2 � �2 �
	

�	
 
y2

 
e�y2�222�

 dy

y � 1x � �2��
V1X2 � �

	

�	
 
1x � �22 

e�1x��22�2�222��
 dx

e�y2�222�

 E1X2 � � �
	

�	

e�y2�222�
 dy 
 � �

	

�	

y  
e�y2�222�

 dy

y � 1x � �2��
E1X2 � �

	

�	

 

x 
e�1x��22�2�222��

 dx

If X is a binomial random variable with parameters n and p, and if x � 0, 1, 2, p , n,
the continuity correction to improve approximations obtained from the normal dis-
tribution is

and

P1x � X 2 � P 1x � 0.5 � X 2 � P ° x � 0.5 � np2np 11 � p2 � Z¢

P1X � x2 � P1X � x 
 0.52 � P °Z �
x 
 0.5 � np2np 11 � p2 ¢
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4-2 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

A way to remember the approximation is to write the probability in terms of and
then add or subtract the 0.5 correction factor to make the probability greater.

EXAMPLE S4-1 Consider the situation in Example 4-20 with and . The probability 
is better approximated as

and this result is closer to the exact probability of 0.112 than the previous result of 0.08.
As another example, and this is better approximated as

We can even approximate as

and this compares well with the exact answer of 0.1849.

EXERCISES FOR SECTION 4-8

P15 � X � 52 � P  a5 � 0.5 � 5
2.12

� Z �
5 
 0.5 � 5

2.12
b � P1�0.24 � Z � 0.242 � 0.19

P1X � 52 � P15 � X � 52
P19 � X2 � P18.5 � X2 � P  a9 � 0.5 � 5

2.12
� Zb � P11.65 � Z2 � 0.05

P18 � X 2 � P19 � X 2

P1X � 22 � P1X � 2.52 � P  aZ �
2 
 0.5 � 5

2.12
b � P1Z � �1.182 � 0.119

P1X � 22p � 0.1n � 50

� or �

S4-1. Continuity correction. The normal approximation of
a binomial probability is sometimes modified by a correction
factor of 0.5 that improves the approximation. Suppose that X
is binomial with and . Because X is a discrete
random variable, P(X � 2) � P(X � 2.5). However, the nor-
mal approximation to P(X � 2) can be improved by applying
the approximation to P(X � 2.5).
(a) Approximate P(X � 2) by computing the z-value corre-

sponding to x � 2.5.
(b) Approximate P(X � 2) by computing the z-value corre-

sponding to x � 2.
(c) Compare the results in parts (a) and (b) to the exact value

of P(X � 2) to evaluate the effectiveness of the continuity
correction.

(d) Use the continuity correction to approximate P(X � 10).

S4-2. Continuity correction. Suppose that X is binomial
with n � 50 and p � 0.1. Because X is a discrete random vari-
able, P(X � 2) � P(X � 1.5). However, the normal approxi-
mation to P(X � 2) can be improved by applying the approxi-
mation to P(X � 1.5). The continuity correction of 0.5 is either
added or subtracted. The easy rule to remember is that the con-
tinuity correction is always applied to make the approximating
normal probability greatest.
(a) Approximate P(X � 2) by computing the z-value corre-

sponding to 1.5.
(b) Approximate P(X � 2) by computing the z-value corre-

sponding to 2.
(c) Compare the results in parts (a) and (b) to the exact value

of P(X � 2) to evaluate the effectiveness of the continuity
correction.

p � 0.1n � 50

(d) Use the continuity correction to approximate P(X 
 6).

S4-3. Continuity correction. Suppose that X is binomial
with n � 50 and p � 0.1. Because X is a discrete random vari-
able, P(2 � X � 5) � P(1.5 � X � 5.5). However, the normal
approximation to P(2 � X � 5) can be improved by applying
the approximation to P(1.5 � X � 5.5).
(a) Approximate P(2 � X � 5) by computing the z-values

corresponding to 1.5 and 5.5.
(b) Approximate P(2 � X � 5) by computing the z-values

corresponding to 2 and 5.

S4-4. Continuity correction. Suppose that X is binomial
with n � 50 and p � 0.1. Then, P(X � 10) � P(10 � X � 10).
Using the results for the continuity corrections, we can ap-
proximate P(10 � X � 10) by applying the normal standardi-
zation to P(9.5 � X � 10.5).
(a) Approximate P(X � 10) by computing the z-values corre-

sponding to 9.5 and 10.5.
(b) Approximate P(X � 5).

S4-5. Continuity correction. The manufacturing of
semiconductor chips produces 2% defective chips. Assume
that the chips are independent and that a lot contains 1000
chips.
(a) Use the continuity correction to approximate the probabil-

ity that 20 to 30 chips in the lot are defective.
(b) Use the continuity correction to approximate the probabil-

ity that exactly 20 chips are defective.
(c) Determine the number of defective chips, x, such that the

normal approximation for the probability of obtaining x
defective chips is greatest.
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