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7Point Estimation 
of Parameters

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Explain the general concepts of estimating the parameters of a population or a probability distribution
2. Explain important properties of point estimators, including bias, variance, and mean square error
3. Know how to construct point estimators using the method of moments and the method of maxi-

mum likelihood
4. Know how to compute and explain the precision with which a parameter is estimated
5. Understand the central limit theorem
6. Explain the important role of the normal distribution as a sampling distribution

CD MATERIAL
7. Use bootstrapping to find the standard error of a point estimate
8. Know how to construct a point estimator using the Bayesian approach
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7-1 INTRODUCTION 221

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

7-1 INTRODUCTION

The field of statistical inference consists of those methods used to make decisions or to draw
conclusions about a population. These methods utilize the information contained in a sample
from the population in drawing conclusions. This chapter begins our study of the statistical
methods used for inference and decision making.

Statistical inference may be divided into two major areas: parameter estimation and
hypothesis testing. As an example of a parameter estimation problem, suppose that a structural
engineer is analyzing the tensile strength of a component used in an automobile chassis. Since
variability in tensile strength is naturally present between the individual components because of
differences in raw material batches, manufacturing processes, and measurement procedures (for
example), the engineer is interested in estimating the mean tensile strength of the components.
In practice, the engineer will use sample data to compute a number that is in some sense a rea-
sonable value (or guess) of the true mean. This number is called a point estimate. We will see
that it is possible to establish the precision of the estimate.

Now consider a situation in which two different reaction temperatures can be used in a
chemical process, say and . The engineer conjectures that results in higher yields than
does . Statistical hypothesis testing is a framework for solving problems of this type. In this
case, the hypothesis would be that the mean yield using temperature is greater than the mean
yield using temperature Notice that there is no emphasis on estimating yields; instead, the
focus is on drawing conclusions about a stated hypothesis.

Suppose that we want to obtain a point estimate of a population parameter. We know that
before the data is collected, the observations are considered to be random variables, say

Therefore, any function of the observation, or any statistic, is also a random
variable. For example, the sample mean and the sample variance are statistics and they
are also random variables.

Since a statistic is a random variable, it has a probability distribution. We call the proba-
bility distribution of a statistic a sampling distribution. The notion of a sampling distribution
is very important and will be discussed and illustrated later in the chapter.

When discussing inference problems, it is convenient to have a general symbol to represent
the parameter of interest. We will use the Greek symbol (theta) to represent the parameter. The
objective of point estimation is to select a single number, based on sample data, that is the most
plausible value for . A numerical value of a sample statistic will be used as the point estimate.

In general, if X is a random variable with probability distribution , characterized by
the unknown parameter , and if is a random sample of size n from X, the
statistic is called a point estimator of . Note that is a random vari-
able because it is a function of random variables. After the sample has been selected, takes
on a particular numerical value called the point estimate of .��̂

�̂
�̂��̂ � h1X1, X2, p , Xn2

X1, X2, p , Xn�
f 1x2

�

�

S2X
X1, X2, p , Xn.

t2.
t1

t2

t1t2t1

A point estimate of some population parameter is a single numerical value of a
statistic . The statistic is called the point estimator.�̂�̂

�̂�
Definition
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222 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

As an example, suppose that the random variable X is normally distributed with an un-
known mean . The sample mean is a point estimator of the unknown population mean .
That is, . After the sample has been selected, the numerical value is the point estimate
of . Thus, if , and , the point estimate of is

Similarly, if the population variance is also unknown, a point estimator for is the sample
variance , and the numerical value calculated from the sample data is called the
point estimate of .

Estimation problems occur frequently in engineering. We often need to estimate

The mean � of a single population

The variance �2 (or standard deviation �) of a single population

The proportion p of items in a population that belong to a class of interest

The difference in means of two populations, 

The difference in two population proportions, 

Reasonable point estimates of these parameters are as follows:

For �, the estimate is the sample mean.

For �2, the estimate is , the sample variance.

For p, the estimate is , the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

For , the estimate is , the difference between the sample
means of two independent random samples.

For , the estimate is , the difference between two sample proportions
computed from two independent random samples.

We may have several different choices for the point estimator of a parameter. For ex-
ample, if we wish to estimate the mean of a population, we might consider the sample
mean, the sample median, or perhaps the average of the smallest and largest observations
in the sample as point estimators. In order to decide which point estimator of a particular
parameter is the best one to use, we need to examine their statistical properties and develop
some criteria for comparing estimators.

7-2 GENERAL CONCEPTS OF POINT ESTIMATION

7-2.1 Unbiased Estimators

An estimator should be “close” in some sense to the true value of the unknown parameter.
Formally, we say that is an unbiased estimator of � if the expected value of is equal to �.
This is equivalent to saying that the mean of the probability distribution of (or the mean of
the sampling distribution of ) is equal to �.�̂

�̂
�̂�̂

p̂1 � p̂2p1 � p2

�̂1 � �̂2 � x1 � x2�1 � �2

p̂ � x�n
�̂2 � s2

�̂ � x,

p1 � p2

�1 � �2

�2
s2 � 6.9S2

�2�2

x �
25 � 30 � 29 � 31

4
� 28.75

�x4 � 31x1 � 25, x2 � 30, x3 � 29�
x�̂ � X

��
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When an estimator is unbiased, the bias is zero; that is, 

EXAMPLE 7-1 Suppose that X is a random variable with mean � and variance . Let be a
random sample of size n from the population represented by X. Show that the sample mean 
and sample variance are unbiased estimators of � and , respectively.

First consider the sample mean. In Equation 5.40a in Chapter 5, we showed that 
Therefore, the sample mean is an unbiased estimator of the population mean �.

Now consider the sample variance. We have

The last equality follows from Equation 5-37 in Chapter 5. However, since 
and we have

Therefore, the sample variance is an unbiased estimator of the population variance 

Although is unbiased for �2, S is a biased estimator of �. For large samples, the bias is very
small. However, there are good reasons for using S as an estimator of � in samples from  nor-
mal distributions, as we will see in the next three chapters when are discuss confidence
intervals and hypothesis testing.

S2

�2.S2

 � �2

 �
1

n � 1
  1n�2 � n�2 � n�2 � �22

E1S22 �
1

n � 1
  c a

n

i�1
 1�2 � �22 � n1�2 � �2�n2 d

E1X 22 � �2 � �2�n,
E1X2

i 2 � �2 � �2

 �
1

n � 1
  c a

n

i�1
 E 1X 2

i 2 � nE1X 22 d

 �
1

n � 1
 E a

n

i�1
 1X 2

i � X 2 � 2X Xi2 �
1

n � 1
  E  aa

n

i�1
 X 2

i � nX 2b

 E1S22 � E  £ a
n

i�1
 1Xi � X 22
n � 1

§ �
1

n � 1
  E a

n

i�1
 1Xi � X 22

X
E1X 2 � �.

�2S2
X

X1, X2, p , Xn�2

E1�̂2 � � � 0.

The point estimator is an unbiased estimator for the parameter � if

(7-1)

If the estimator is not unbiased, then the difference

(7-2)

is called the bias of the estimator .�̂

E1�̂2 � �

E1�̂2 � �

�̂
Definition
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224 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

Sometimes there are several unbiased estimators of the sample population parameter. For
example, suppose we take a random sample of size from a normal population and
obtain the data x1 � 12.8, x2 � 9.4, x3 � 8.7, x4 � 11.6, x5 � 13.1, x6 � 9.8, x7 � 14.1,
x8 � 8.5, x9 � 12.1, x10 � 10.3. Now the sample mean is

the sample median is

and a 10% trimmed mean (obtained by discarding the smallest and largest 10% of the sample
before averaging) is

We can show that all of these are unbiased estimates of �. Since there is not a unique unbiased
estimator, we cannot rely on the property of unbiasedness alone to select our estimator. We
need a method to select among unbiased estimators. We suggest a method in Section 7-2.3.

7-2.2 Proof That S is a Biased Estimator of � (CD Only)

7-2.3 Variance of a Point Estimator

Suppose that and are unbiased estimators of �. This indicates that the distribution of
each estimator is centered at the true value of �. However, the variance of these distributions
may be different. Figure 7-1 illustrates the situation. Since has a smaller variance than 
the estimator is more likely to produce an estimate close to the true value �. A logical prin-
ciple of estimation, when selecting among several estimators, is to choose the estimator that
has minimum variance.

�̂1

�̂2,�̂1

�̂2�̂1

 � 10.98

 xtr1102 �
8.7 � 9.4 � 9.8 � 10.3 � 11.6 � 12.1 � 12.8 � 13.1

8

x~ �
10.3 � 11.6

2
� 10.95

 � 11.04

x �
12.8 � 9.4 � 8.7 � 11.6 � 13.1 � 9.8 � 14.1 � 8.5 � 12.1 � 10.3

10

n � 10

If we consider all unbiased estimators of �, the one with the smallest variance is
called the minimum variance unbiased estimator (MVUE).

Definition

θ

Distribution of    1Θ̂

Distribution of    2Θ̂
Figure 7-1 The
sampling distributions
of two unbiased estima-
tors and .	̂2	̂1
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In a sense, the MVUE is most likely among all unbiased estimators to produce an estimate 
that is close to the true value of . It has been possible to develop methodology to identify the
MVUE in many practical situations. While this methodology is beyond the scope of this book,
we give one very important result concerning the normal distribution.

�
�̂

If is a random sample of size n from a normal distribution with mean
and variance , the sample mean is the MVUE for .�X�2�
X1, X2, p , Xn

Theorem 7-1

In situations in which we do not know whether an MVUE exists, we could still use a minimum
variance principle to choose among competing estimators. Suppose, for example, we wish to es-
timate the mean of a population (not necessarily a normal population). We have a random sample
of n observations and we wish to compare two possible estimators for : the sam-
ple mean and a single observation from the sample, say, . Note that both and Xi are unbi-
ased estimators of ; for the sample mean, we have from Equation 5-40b and the
variance of any observation is . Since for sample sizes we
would conclude that the sample mean is a better estimator of � than a single observation .

7-2.4 Standard Error: Reporting a Point Estimate

When the numerical value or point estimate of a parameter is reported, it is usually desirable
to give some idea of the precision of estimation. The measure of precision usually employed
is the standard error of the estimator that has been used.

Xi

n 
 2,V1X 2 � V1Xi2V1Xi2 � �2
V1X 2 � �2�n�

XXiX
�X1, X2, p , Xn

The standard error of an estimator is its standard deviation, given by
. If the standard error involves unknown parameters that can be esti-

mated, substitution of those values into produces an estimated standard error,
denoted by .�̂

�̂

��̂

��̂ � 2V1�̂2 �̂

Definition

Sometimes the estimated standard error is denoted by or .
Suppose we are sampling from a normal distribution with mean and variance . Now

the distribution of is normal with mean and variance , so the standard error of is

If we did not know � but substituted the sample standard deviation S into the above equation,
the estimated standard error of would be

When the estimator follows a normal distribution, as in the above situation, we can be rea-
sonably confident that the true value of the parameter lies within two standard errors of the

�̂X �
S1n

 

X

�X �
�1n

X�2�n�X
�2�

se1�̂2s�̂
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226 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

estimate. Since many point estimators are normally distributed (or approximately so) for large
n, this is a very useful result. Even in cases in which the point estimator is not normally
distributed, we can state that so long as the estimator is unbiased, the estimate of the parameter
will deviate from the true value by as much as four standard errors at most 6 percent of the time.
Thus a very conservative statement is that the true value of the parameter differs from the point
estimate by at most four standard errors. See Chebyshev’s inequality in the CD only material.

EXAMPLE 7-2 An article in the Journal of Heat Transfer (Trans. ASME, Sec. C, 96, 1974, p. 59) described
a new method of measuring the thermal conductivity of Armco iron. Using a temperature of
100�F and a power input of 550 watts, the following 10 measurements of thermal conductiv-
ity (in Btu/hr-ft-�F) were obtained:

A point estimate of the mean thermal conductivity at and 550 watts is the sample mean or

The standard error of the sample mean is , and since is unknown, we may replace
it by the sample standard deviation to obtain the estimated standard error of as

Notice that the standard error is about 0.2 percent of the sample mean, implying that we have ob-
tained a relatively precise point estimate of thermal conductivity. If we can assume that thermal
conductivity is normally distributed, 2 times the standard error is � 0.1796,
and we are highly confident that the true mean thermal conductivity is with the interval

, or between 41.744 and 42.104.

7-2.5 Bootstrap Estimate of the Standard Error (CD Only)

7-2.6 Mean Square Error of an Estimator

Sometimes it is necessary to use a biased estimator. In such cases, the mean square error of the
estimator can be important. The mean square error of an estimator is the expected squared
difference between and �.�̂

�̂

41.924  0.1756

2�̂X � 210.08982

�̂X �
s1n

�
0.284110

� 0.0898

Xs � 0.284
��X � ��1n

x � 41.924 Btu/hr-ft-�F

100�F

41.60, 41.48, 42.34, 41.95, 41.86,

42.18, 41.72, 42.26, 41.81, 42.04

The mean square error of an estimator of the parameter � is defined as

(7-3)MSE1�̂2 � E1�̂ � �22
�̂

Definition

The mean square error can be rewritten as follows:

 � V 1�̂2 � 1bias22
 MSE1�̂2 � E 3�̂ � E1�̂2 42 � 3� � E1�̂2 42
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That is, the mean square error of is equal to the variance of the estimator plus the squared bias.
If is an unbiased estimator of �, the mean square error of is equal to the variance of .

The mean square error is an important criterion for comparing two estimators. Let
and be two estimators of the parameter �, and let MSE ( ) and MSE ( ) be the mean
square errors of and . Then the relative efficiency of to is defined as

(7-4)

If this relative efficiency is less than 1, we would conclude that is a more efficient estima-
tor of � than , in the sense that it has a smaller mean square error.

Sometimes we find that biased estimators are preferable to unbiased estimators because they
have smaller mean square error. That is, we may be able to reduce the variance of the estimator
considerably by introducing a relatively small amount of bias. As long as the reduction in variance
is greater than the squared bias, an improved estimator from a mean square error viewpoint will
result. For example, Fig. 7-2 shows the probability distribution of a biased estimator that has
a smaller variance than the unbiased estimator . An estimate based on would more likely
be close to the true value of � than would an estimate based on . Linear regression analysis
(Chapters 11 and 12) is an area in which biased estimators are occasionally used.

An estimator that has a mean square error that is less than or equal to the mean square
error of any other estimator, for all values of the parameter �, is called an optimal estimator
of �. Optimal estimators rarely exist.

EXERCISES FOR SECTION 7-2

�̂

�̂2

�̂1�̂2

�̂1

�̂2

�̂1

MSE1�̂12
MSE1�̂22

�̂1�̂2�̂2�̂1

�̂2�̂1�̂2

�̂1

�̂�̂�̂
�̂

θ

Distribution of    1Θ̂

Distribution of    2Θ

Θ

^

E(   1)^

Figure 7-2 A biased
estimator that has
smaller variance than
the unbiased estimator

.	̂2

	̂1

7-1. Suppose we have a random sample of size 2n from a
population denoted by X, and and . Let

be two estimators of �. Which is the better estimator of �?
Explain your choice.

7-2. Let denote a random sample from a
population having mean and variance . Consider the
following estimators of :

 �̂2 �
2X1 � X6 � X4

2

 �̂1 �
X1 � X2 � p � X7

7

�
�2�

X1, X2, p , X7

X1 �
1

2n
  a

2n

i�1
 Xi and X2 �

1
n   a

n

i�1
 Xi

V1X 2 � �2E1X 2 � �

7-2 GENERAL CONCEPTS OF POINT ESTIMATION 227

(a) Is either estimator unbiased?
(b) Which estimator is best? In what sense is it best?

7-3. Suppose that and are unbiased estimators of the
parameter . We know that and .
Which estimator is best and in what sense is it best?

7-4. Calculate the relative efficiency of the two estimators
in Exercise 7-2.

7-5. Calculate the relative efficiency of the two estimators
in Exercise 7-3.

7-6. Suppose that and are estimators of the parame-
ter �. We know that 

. Which estimator is best? In what sense is it best?

7-7. Suppose that , , and are estimators of �. We
know that 

, and . Compare these three esti-
mators. Which do you prefer? Why?

E1�̂3 � �22 � 6V 1�̂22 � 10
E1�̂12 � E1�̂22 � �, E 1�̂32 � �, V 1�̂12 � 12,

�̂3�̂2�̂1

V 1�̂22 � 4
E1�̂12 � �, E1�̂22 � ��2, V 1�̂12 � 10,

�̂2�̂1

V1�̂22 � 4V1�̂12 � 10�
�̂2�̂1
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228 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

7-8. Let three random samples of sizes n1 � 20, n2 � 10,
and n3 � 8 be taken from a population with mean � and
variance �2. Let , , and be the sample variances.
Show that is an unbiased
estimator of �2.

7-9. (a) Show that is a biased estimator
of .

(b) Find the amount of bias in the estimator.
(c) What happens to the bias as the sample size n increases?

7-10. Let be a random sample of size n from
a population with mean � and variance .
(a) Show that is a biased estimator for .
(b) Find the amount of bias in this estimator.
(c) What happens to the bias as the sample size n increases?

7-11. Data on pull-off force (pounds) for connectors used in
an automobile engine application are as follows: 79.3, 75.1,
78.2, 74.1, 73.9, 75.0, 77.6, 77.3, 73.8, 74.6, 75.5, 74.0, 74.7,
75.9, 72.9, 73.8, 74.2, 78.1, 75.4, 76.3, 75.3, 76.2, 74.9, 78.0,
75.1, 76.8.
(a) Calculate a point estimate of the mean pull-off force of all

connectors in the population. State which estimator you
used and why.

(b) Calculate a point estimate of the pull-off force value that
separates the weakest 50% of the connectors in the popu-
lation from the strongest 50%.

(c) Calculate point estimates of the population variance and
the population standard deviation.

(d) Calculate the standard error of the point estimate found in
part (a). Provide an interpretation of the standard error.

(e) Calculate a point estimate of the proportion of all connec-
tors in the population whose pull-off force is less than
73 pounds.

7-12. Data on oxide thickness of semiconductors are as
follows: 425, 431, 416, 419, 421, 436, 418, 410, 431, 433,
423, 426, 410, 435, 436, 428, 411, 426, 409, 437, 422, 428,
413, 416.
(a) Calculate a point estimate of the mean oxide thickness for

all wafers in the population.
(b) Calculate a point estimate of the standard deviation of

oxide thickness for all wafers in the population.
(c) Calculate the standard error of the point estimate from

part (a).
(d) Calculate a point estimate of the median oxide thickness

for all wafers in the population.
(e) Calculate a point estimate of the proportion of wafers in

the population that have oxide thickness greater than 430
angstrom.

7-13. is a random sample from a normal
distribution with mean and variance . Let and 
be the smallest and largest observations in the sample.
(a) Is an unbiased estimate for �?
(b) What is the standard error of this estimate?
(c) Would this estimate be preferable to the sample mean ?X

1Xmin � Xmax2�2
XmaxXmin�2�

X1, X2, p , Xn

�2X 2
�2

X1, X2, p , Xn

�2
g n

i�1 1Xi � X 22�n
S2 � 120S2

1 � 10S2
2 � 8S2

32�38
S2

3S2
2S2

1

7-14. Suppose that X is the number of observed “successes”
in a sample of n observations where p is the probability of
success on each observation.
(a) Show that is an unbiased estimator of p.
(b) Show that the standard error of is 

How would you estimate the standard error?

7-15. and are the sample mean and sample variance
from a population with mean and variance Similarly, 
and are the sample mean and sample variance from a sec-
ond independent population with mean and variance .
The sample sizes are and , respectively.
(a) Show that 1 � 2 is an unbiased estimator of .
(b) Find the standard error of . How could you

estimate the standard error?

7-16. Continuation of Exercise 7-15. Suppose that both pop-
ulations have the same variance; that is, . Show
that

is an unbiased estimator of 

7-17. Two different plasma etchers in a semiconductor fac-
tory have the same mean etch rate . However, machine 1 is
newer than machine 2 and consequently has smaller variability
in etch rate. We know that the variance of etch rate for machine
1 is and for machine 2 it is . Suppose that we have

independent observations on etch rate from machine 1 and 
independent observations on etch rate from machine 2.
(a) Show that �̂ � � 1 � (1 � �) 2 is an unbiased estima-

tor of � for any value of � between 0 and 1.
(b) Find the standard error of the point estimate of in part (a).
(c) What value of would minimize the standard error of the

point estimate of ?
(d) Suppose that and n1 � 2n2. What value of � would

you select to minimize the standard error of the point esti-
mate of . How “bad” would it be to arbitrarily choose

in this case?

7-18. Of randomly selected engineering students at ASU,
owned an HP calculator, and of randomly selected

engineering students at Virginia Tech owned an HP calculator.
Let p1 and p2 be the probability that randomly selected ASU and
Va. Tech engineering students, respectively, own HP calculators.
(a) Show that an unbiased estimate for is (X1�n1) �

(X2�n2).
(b) What is the standard error of the point estimate in

part (a)?
(c) How would you compute an estimate of the standard error

found in part (b)?
(d) Suppose that n1 � 200, X1 � 150, n2 � 250, and X2 � 185.

Use the results of part (a) to compute an estimate of p1 � p2.
(e) Use the results in parts (b) through (d) to compute an

estimate of the standard error of the estimate.

p1 � p2

X2

n2X1

n1

� � 0.5
�

a � 4
�

�
�

XX

n2n1

�2
2 � a�2

1�2
1

�

�2.

S 2
p �
1n1 � 12  S2

1 � 1n2 � 12  S 2
2

n1 � n2 � 2

� 2
1 � � 2

2 � �2

X1 � X2

�1 � �2XX
n2n1

�2
2�1

S 2
2

X2�2
2.�

S 2
1X1

1p11 � p2�n.P̂
P̂ � X�n
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7-3 METHODS OF POINT ESTIMATION

The definitions of unbiasness and other properties of estimators do not provide any guidance
about how good estimators can be obtained. In this section, we discuss two methods for ob-
taining point estimators: the method of moments and the method of maximum likelihood.
Maximum likelihood estimates are generally preferable to moment estimators because they
have better efficiency properties. However, moment estimators are sometimes easier to com-
pute. Both methods can produce unbiased point estimators.

7-3.1 Method of Moments

The general idea behind the method of moments is to equate population moments, which are
defined in terms of expected values, to the corresponding sample moments. The population
moments will be functions of the unknown parameters. Then these equations are solved to
yield estimators of the unknown parameters.

Let be a random sample from the probability distribution f(x), where
f(x) can be a discrete probability mass function or a continuous probability density
function. The k th population moment (or distribution moment) is E(Xk ), k �
1, 2, . The corresponding k th sample moment is 11�n2 g n

i�1 X
k
i , k � 1, 2, p .p

X1, X2, p , Xn

Definition

To illustrate, the first population moment is E(X ) � �, and the first sample moment is
. Thus by equating the population and sample moments, we find that 

�̂ � X . That is, the sample mean is the moment estimator of the population mean. In the
general case, the population moments will be functions of the unknown parameters of the dis-
tribution, say, �1, �2, p , �m.

11�n2 g n
i�1 Xi � X

7-3 METHODS OF POINT ESTIMATION 229

Let be a random sample from either a probability mass function
or probability density function with m unknown parameters The
moment estimators are found by equating the first m population
moments to the first m sample moments and solving the resulting equations for the
unknown parameters.

	̂1, 	̂2, p , 	̂m

�1, �2, p , �m.
X1, X2, p , Xn

Definition

EXAMPLE 7-3 Suppose that is a random sample from an exponential distribution with param-
eter . Now there is only one parameter to estimate, so we must equate E(X) to . For the
exponential, Therefore results in so is the
moment estimator of .

As an example, suppose that the time to failure of an electronic module used in an automobile
engine controller is tested at an elevated temperature to accelerate the failure mechanism.

�
�̂ � 1�X1�� � X,E1X 2 � XE1X 2 � 1��.

X�
X1, X2, p , Xn
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230 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

The time to failure is exponentially distributed. Eight units are randomly selected and
tested, resulting in the following failure time (in hours): x1 � 11.96, x2 � 5.03, x3 � 67.40, x4

� 16.07, x5 � 31.50, x6 � 7.73, x7 � 11.10, and x8 � 22.38. Because , the moment
estimate of is 

EXAMPLE 7-4 Suppose that X1, X2, , Xn is a random sample from a normal distribution with parameters �
and �2. For the normal distribution E(X) � � and E(X 2) � �2 � �2. Equating E(X ) to and
E(X 2) to gives

Solving these equations gives the moment estimators

Notice that the moment estimator of �2 is not an unbiased estimator.

EXAMPLE 7-5 Suppose that X1, X2, , Xn is a random sample from a gamma distribution with parameters r
and �. For the gamma distribution and The moment esti-
mators are found by solving

The resulting estimators are

To illustrate, consider the time to failure data introduced following Example 7-3. For this data,
and , so the moment estimates are

When r � 1, the gamma reduces to the exponential distribution. Because slightly exceeds
unity, it is quite possible that either the gamma or the exponential distribution would provide
a reasonable model for the data.

7-3.2 Method of Maximum Likelihood

One of the best methods of obtaining a point estimator of a parameter is the method of maxi-
mum likelihood. This technique was developed in the 1920s by a famous British statistician,
Sir R. A. Fisher. As the name implies, the estimator will be the value of the parameter that
maximizes the likelihood function.

r̂

r̂ �
121.6522

11�82  6639.40 � 121.6522 � 1.30,  �̂ �
21.65

11�82  6639.40 � 121.6522 � 0.0599

g 8
i�1x

2
i � 6639.40x � 21.65

r̂ �
X 2

11�n2a
n

i�1
X2

i � X 2
i

  �̂ �
X

11�n2a
n

i�1
X2

i � X 2

r�� � X, r 1r � 12��2 �
1
n a

n

i�1
 X

2
i  

E1X22 � r 1r � 12 ��2.E1X 2 � r��
p

�̂ � X,  �̂2 �
a

n

i�1
 X2

i � a1
n a

n

i�1
 X2

i b
2

n �
a

n

i�1
 1Xi � X 22

n

� � X,  �2 � �2 �
1
n a

n

i�1
 X2

i

1
n g n

i�1 X
2
i

X
p

� � 1�  x � 1�21.65 � 0.0462.�
x� � 21.65
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In the case of a discrete random variable, the interpretation of the likelihood function is
clear. The likelihood function of the sample L( ) is just the probability

That is, L( ) is just the probability of obtaining the sample values x1, x2, , xn.  Therefore, in
the discrete case, the maximum likelihood estimator is an estimator that maximizes the prob-
ability of occurrence of the sample values.

EXAMPLE 7-6 Let X be a Bernoulli random variable. The probability mass function is

where p is the parameter to be estimated. The likelihood function of a random sample of size
n is

We observe that if maximizes L( p), also maximizes ln L( p). Therefore,

Now

Equating this to zero and solving for p yields . Therefore, the maximum
likelihood estimator of p is

P̂ �
1
n a

n

i�1
 Xi

p̂ � 11�n2  g n
i�1 xi

d ln L1  p2
dp

�
a

n

i�1
 xi

p �

an � a
n

i�1
 xib

1 � p

ln L1  p2 � aa
n

i�1
 xib ln p � an � a

n

i�1
 xib ln 11 � p2

p̂p̂

 � q
n

i�1
 pxi 11 � p21�xi � pa

n

i�1
xi 11 � p2n�a

n

i�1
xi

 L 1 p2 � px1 11 � p21�x1 px2 11 � p21�x2  p pxn 11 � p21�xn

f 1x; p2 � epx 11 � p21�x, x � 0, 1

0, otherwise

p�

P 1X1 � x1, X2 � x2, p , Xn � xn2
�
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Suppose that X is a random variable with probability distribution f (x; ), where is
a single unknown parameter. Let x1, x2, , xn be the observed values in a random
sample of size n. Then the likelihood function of the sample is

(7-5)

Note that the likelihood function is now a function of only the unknown parameter 
The maximum likelihood estimator of is the value of that maximizes the like-
lihood function L( ).�

��
�.

L1�2 � f 1x1; �2 � f 1x2; �2 � p � f 1xn; �2

p
��

Definition
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232 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

Suppose that this estimator was applied to the following situation: n items are selected
at random from a production line, and each item is judged as either defective (in which case
we set xi � 1) or nondefective (in which case we set xi � 0). Then is the number of
defective units in the sample, and is the sample proportion defective. The parameter p is
the population proportion defective; and it seems intuitively quite reasonable to use as
an estimate of p.

Although the interpretation of the likelihood function given above is confined to the dis-
crete random variable case, the method of maximum likelihood can easily be extended to a
continuous distribution. We now give two examples of maximum likelihood estimation for
continuous distributions.

EXAMPLE 7-7 Let X be normally distributed with unknown and known variance . The likelihood
function of a random sample of size n, say X1, X2, , Xn, is

Now

and

Equating this last result to zero and solving for � yields

Thus the sample mean is the maximum likelihood estimator of �. Notice that this is identical
to the moment estimator.

EXAMPLE 7-8 Let X be exponentially distributed with parameter �. The likelihood function of a random
sample of size n, say X1, X2, , Xn, is

The log likelihood is

ln L1�2 � n ln � � � a
n

i�1
 xi

L1�2 � q
n

i�1
 �e��xi � �n

 e�� a
n

i�1
 xi

p

�̂ �
a

n

i�1
 Xi

n � X

d ln L1�2
d�

� 1�22�1 a
n

i�1
 1xi � �2

ln L1�2 � �1n�22 ln12��22 � 12�22�1 a
n

i�1
 1xi � �22

L1�2 � q
n

i�1
 

1

�12�
  e�1xi��22�12�22 � 1

12��22n�2   e�11�2�22 an
i�1

 1xi��22

p
�2�

p̂
p̂

g n
i�1 xi
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7-3 METHODS OF POINT ESTIMATION 233

Now

and upon equating this last result to zero we obtain

Thus the maximum likelihood estimator of � is the reciprocal of the sample mean. Notice that
this is the same as the moment estimator.

It is easy to illustrate graphically just how the method of maximum likelihood works.
Figure 7-3(a) plots the log of the likelihood function for the exponential parameter from
Example 7-8, using the n � 8 observations on failure time given following Example 7-3. We
found that the estimate of � was . From Example 7-8, we know that this is a
maximum likelihood estimate. Figure 7-3(a) shows clearly that the log likelihood function is
maximized at a value of � that is approximately equal to 0.0462. Notice that the log likelihood
function is relatively flat in the region of the maximum. This implies that the parameter is not
estimated very precisely. If the parameter were estimated precisely, the log likelihood function
would be very peaked at the maximum value. The sample size here is relatively small, and this
has led to the imprecision in estimation. This is illustrated in Fig. 7-3(b) where we have plot-
ted the difference in log likelihoods for the maximum value, assuming that the sample sizes
were n � 8, 20, and 40 but that the sample average time to failure remained constant at

. Notice how much steeper the log likelihood is for n � 20 in comparsion to n � 8,
and for n � 40 in comparison to both smaller sample sizes.

The method of maximum likelihood can be used in situations where there are several un-
known parameters, say, �1, �2, , �k to estimate. In such cases, the likelihood function is a func-
tion of the k unknown parameters �1, �2, , �k, and the maximum likelihood estimators 
would be found by equating the k partial derivatives to
zero and solving the resulting system of equations.

�L1�1, �2, p , �k2���i, i � 1, 2, p , k
5�̂i6p

p

x � 21.65

�̂ � 0.0462

�̂ � n�a
n

i�1
 Xi � 1� X

d ln L1�2
d�

�
n
�

� a
n

i�1
 xi

(a)
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Figure 7-3 Log likelihood for the exponential distribution, using the failure time data. (a) Log likelihood with n � 8 (original
data). (b) Log likelihood if n � 8, 20, and 40.
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234 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

EXAMPLE 7-9 Let X be normally distributed with mean � and variance � 2, where both � and � 2 are
unknown. The likelihood function for a random sample of size n is

and

Now

The solutions to the above equation yield the maximum likelihood estimators

Once again, the maximum likelihood estimators are equal to the moment estimators.

Properties of the Maximum Likelihood Estimator
The method of maximum likelihood is often the estimation method that mathematical statisti-
cians prefer, because it is usually easy to use and produces estimators with good statistical
properties. We summarize these properties as follows.

�̂ � X  �̂2 �
1
n a

n

i�1
 1Xi � X 22

 � ln L1�, �22
�1�22 � �

n

2�2 �
1

2�4 a
n

i�1
 1xi � �22 � 0

� ln L1�, �22
��

�
1

�2 a
n

i�1
 1xi � �2 � 0

ln L1�, �22 � �
n

2
  ln12��22 �

1

2�2 a
n

i�1
 1xi � �22

L1�, �22 � q
n

i�1
 

1

�12�
  e�1xi��22�12�22 � 1

12��22n�2   e�11�2�22 an
i�1

 1xi��22

Under very general and not restrictive conditions, when the sample size n is large and
if is the maximum likelihood estimator of the parameter �,

(1) is an approximately unbiased estimator for ,

(2) the variance of is nearly as small as the variance that could be obtained
with any other estimator, and

(3) has an approximate normal distribution.�̂

�̂

� 3E1�̂2 � � 4�̂

�̂

Properties of
the Maximum

Likelihood
Estimator

Properties 1 and 2 essentially state that the maximum likelihood estimator is approxi-
mately an MVUE. This is a very desirable result and, coupled with the fact that it is fairly easy
to obtain in many situations and has an asymptotic normal distribution (the “asymptotic”
means “when n is large”), explains why the maximum likelihood estimation technique is
widely used. To use maximum likelihood estimation, remember that the distribution of the
population must be either known or assumed.
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7-3 METHODS OF POINT ESTIMATION 235

EXAMPLE 7-10 In the normal distribution case, the maximum likelihood estimators of � and �2 were 
and . To obtain the maximum likelihood estimator of the function  

, substitute the estimators and into the function h, which yields

Thus, the maximum likelihood estimator of the standard deviation � is not the sample
standard deviation S.

Complications in Using Maximum Likelihood Estimation
While the method of maximum likelihood is an excellent technique, sometimes complications
arise in its use. For example, it is not always easy to maximize the likelihood function because
the equation(s) obtained from may be difficult to solve. Furthermore, it may
not always be possible to use calculus methods directly to determine the maximum of L(�).
These points are illustrated in the following two examples.

EXAMPLE 7-11 Let X be uniformly distributed on the interval 0 to a. Since the density function is 
for 0 � x � a and zero otherwise, the likelihood function of a random sample of size n is

L1a2 � q
n

i�1
 
1
a �

1

an

f  1x2 � 1�a

dL 1�2�d� � 0

�̂ � 2�̂2 � c 1n a
n

i�1
 1Xi � X 22 d 1� 2

�̂2�̂h1�, �22 � 2�2 � �

�̂2 � g n
i�1 1Xi � X 22�n

�̂ � X

To illustrate the “large-sample” or asymptotic nature of the above properties, consider the
maximum likelihood estimator for �2, the variance of the normal distribution, in Example 7-9.
It is easy to show that

The bias is

Because the bias is negative, tends to underestimate the true variance � 2. Note that the
bias approaches zero as n increases. Therefore, is an asymptotically unbiased estimator
for � 2.

We now give another very important and useful property of maximum likelihood
estimators.

�̂2
�̂2

E1�̂22 � �2 �
n � 1

n  �2 � �2 �
��2

n

E1�̂22 �
n � 1

n  �2

Let be the maximum likelihood estimators of the parameters �1,
�2, , �k. Then the maximum likelihood estimator of any function h(�1, �2, , �k)
of these parameters is the same function of the estimators

.�̂1, �̂2, p , �̂k

h1�̂1, �̂2, p , �̂k2
pp

�̂1, �̂2, p , �̂k

The Invariance
Property
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236 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

if 0 � x1 � a, 0 � x2 � a, , 0 � xn � a. Note that the slope of this function is not zero
anywhere. That is, as long as max(xi) � a, the likelihood is , which is positive, but when
a � max(xi), the likelihood goes to zero, as illustrated in Fig. 7-4. Therefore, calculus meth-
ods cannot be used directly because the maximum value of the likelihood function occurs at
a point of discontinuity. However, since is less than zero for all val-
ues of a � 0, a�n is a decreasing function of a. This implies that the maximum of the likeli-
hood function L(a) occurs at the lower boundary point. The figure clearly shows that we
could maximize L(a) by setting equal to the smallest value that it could logically take on,
which is max(xi). Clearly, a cannot be smaller than the largest sample observation, so setting

equal to the largest sample value is reasonable.

EXAMPLE 7-12 Let X1, X2, , Xn be a random sample from the gamma distribution. The log of the likelihood
function is

The derivatives of the log likelihood are

When the derivatives are equated to zero, we obtain the equations that must be solved to find
the maximum likelihood estimators of r and �:

There is no closed form solution to these equations.
Figure 7-5 shows a graph of the log likelihood for the gamma distribution using the n � 8

observations on failure time introduced previously. Figure 7-5(a) shows the log likelihood

 n ln 1�̂2 � a
n

i�1
 ln 1xi2 � n 

�¿  1r̂2
� 1r̂2

�̂ �
r̂

x

 � ln L1r, �2
��

�
nr
�

� a
n

i�1
 xi

 � ln L1r, �2
�r

� n ln 1�2 � a
n

i�1
 ln 1xi2 � n 

�¿  1r2
� 1r2

 � nr ln 1�2 � 1r � 12 a
n

i�1
 ln 1xi2 � n ln 3� 1r2 4 � � a

n

i�1
 xi

ln L1r, �2 � ln  aq
n

i�1
 
�r X r�1

i  e��xi

� 1r2 b

p

â

â

d�da 1a�n2 � �n�a 
n�1

1�an
p

Max (xi )0

L(a)

a

Figure 7-4 The like-
lihood function for the
uniform distribution in
Example 7-10.
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7-3 METHODS OF POINT ESTIMATION 237

7-19. Consider the Poisson distribution

Find the maximum likelihood estimator of , based on a
random sample of size n.

7-20. Consider the shifted exponential distribution

When � 0, this density reduces to the usual exponential
distribution. When , there is only positive probability to
the right of �.
(a) Find the maximum likelihood estimator of and , based

on a random sample of size n.
(b) Describe a practical situation in which one would suspect

that the shifted exponential distribution is a plausible
model.

��

� � 0
�

f  1x2 � �e��1x��2,  x 
 �

�

f  1x2 �
e���x

x!
,   x � 0, 1, 2, . . .

7-21. Let X be a geometric random variable with parameter
p. Find the maximum likelihood estimator of p, based on a
random sample of size n.
7-22. Let X be a random variable with the following proba-
bility distribution:

Find the maximum likelihood estimator of �, based on a random
sample of size n.

7-23. Consider the Weibull distribution

(a) Find the likelihood function based on a random sample of
size n. Find the log likelihood.

f 1x2 � •
�

�
 ax

�
b��1

e
�ax

�
b�

, 0 � x

   0 , otherwise

f  1x2 � e 1� � 12  x�, 0 � x � 1

    0 , otherwise

surface as a function of r and �, and Figure 7-5(b) is a contour plot. These plots reveal that the
log likelihood is maximized at approximately and . Many statistics com-
puter programs use numerical techniques to solve for the maximum likelihood estimates when
no simple solution exists.

7-3.3 Bayesian Estimation of Parameters (CD Only)

EXERCISES FOR SECTION 7-3

�̂ � 0.08r̂ � 1.75
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Figure 7-5 Log likelihood for the gamma distribution using the failure time data. (a) Log likelihood surface. (b) Contour plot.
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238 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

(b) Show that the log likelihood is maximized by solving the
equations

(c) What complications are involved in solving the two equa-
tions in part (b)?

7-24. Consider the probability distribution in Exercise 7-22.
Find the moment estimator of �.

7-25. Let X1, X2, , Xn be uniformly distributed on the in-
terval 0 to a. Show that the moment estimator of a is 
Is this an unbiased estimator? Discuss the reasonableness of
this estimator.

7-26. Let X1, X2, , Xn be uniformly distributed on the
interval 0 to a. Recall that the maximum likelihood estimator
of a is .
(a) Argue intuitively why cannot be an unbiased estimator

for a.
(b) Suppose that . Is it reasonable that 

consistently underestimates a? Show that the bias in the
estimator approaches zero as n gets large.

(c) Propose an unbiased estimator for a.
(d) Let Y � max(Xi ). Use the fact that if and only

if each to derive the cumulative distribution func-
tion of Y. Then show that the probability density function
of Y is

Use this result to show that the maximum likelihood esti-
mator for a is biased.

7-27. For the continuous distribution of the interval 0 to a,
we have two unbiased estimators for a: the moment estimator

and , where max(Xi ) is
the largest observation in a random sample of size n (see
Exercise 7-26). It can be shown that and that V1â12 � a2� 13n2

â2 � 3 1n � 12�n 4  max1Xi2â1 � 2X

f  1 y2 � •
ny 

n�1

an , 0 � y � a

0    , otherwise

Xi � y
Y � y

âE1â2 � na� 1n � 12
â

â � max 1Xi2
p

â � 2X.
p

 � �
£ a

n

i�1
x�

i

n
§

1��

 � � ≥ a
n

i�1
xi

� ln1xi2

a
n

i�1
xi

�

�
a

n

i�1
ln1xi2
n ¥

�1

. Show that if n � 1, is a better
estimator than . In what sense is it a better estimator of a?

7-28. Consider the probability density function

Find the maximum likelihood estimator for �.

7-29. The Rayleigh distribution has probability density
function

(a) It can be shown that Use this information to
construct an unbiased estimator for �.

(b) Find the maximum likelihood estimator of �. Compare
your answer to part (a).

(c) Use the invariance property of the maximum likelihood
estimator to find the maximum likelihood estimator of the
median of the Raleigh distribution.

7-30. Consider the probability density function

(a) Find the value of the constant c.
(b) What is the moment estimator for �?
(c) Show that is an unbiased estimator for �.
(d) Find the maximum likelihood estimator for �.

7-31. Reconsider the oxide thickness data in Exercise 7-12
and suppose that it is reasonable to assume that oxide thick-
ness is normally distributed.
(a) Use the results of Example 7-9 to compute the maximum

likelihood estimates of � and �2.
(b) Graph the likelihood function in the vicinity of and ,

the maximum likelihood estimates, and comment on its
shape.

7-32. Continuation of Exercise 7-31. Suppose that for the
situation of Exercise 7-12, the sample size was larger (n � 40)
but the maximum likelihood estimates were numerically
equal to the values obtained in Exercise 7-31. Graph the
likelihood function for n � 40, compare it to the one from
Exercise 7-31 (b), and comment on the effect of the larger
sample size.

�̂2�̂

�̂ � 3X

f  1x2 � c 11 � �x2, �1 � x � 1

E1X 
22 � 2�.

f  1x2 �
x

�
  e�x2�2�,  x � 0,  0 � � � �

f  1x2 �
1

�2  
 xe�x��,  0 � x � �, 0 � � � �

â
â2V 1â22 � a2� 3n1n � 22 4

7-4 SAMPLING DISTRIBUTIONS

Statistical inference is concerned with making decisions about a population based on the
information contained in a random sample from that population. For instance, we may be
interested in the mean fill volume of a can of soft drink. The mean fill volume in the
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 239

population is required to be 300 milliliters. An engineer takes a random sample of 25 cans and
computes the sample average fill volume to be milliliters. The engineer will probably
decide that the population mean is � � 300 milliliters, even though the sample mean was
298 milliliters because he or she knows that the sample mean is a reasonable estimate of � and
that a sample mean of 298 milliliters is very likely to occur, even if the true population mean is
� � 300  milliliters. In fact, if the true mean is 300 milliliters, tests of 25 cans made repeatedly,
perhaps every five minutes, would produce values of that vary both above and below � �
300 milliliters.

The sample mean is a statistic; that is, it is a random variable that depends on the results
obtained in each particular sample. Since a statistic is a random variable, it has a probability
distribution.

x

x � 298

For example, the probability distribution of is called the sampling distribution of the
mean.

The sampling distribution of a statistic depends on the distribution of the population, the
size of the sample, and the method of sample selection. The next section presents perhaps the
most important sampling distribution. Other sampling distributions and their applications will
be illustrated extensively in the following two chapters.

7-5 SAMPLING DISTRIBUTIONS OF MEANS

Consider determining the sampling distribution of the sample mean . Suppose that a random
sample of size n is taken from a normal population with mean � and variance �2. Now each
observation in this sample, say, X1, X2, , Xn, is a normally and independently distributed
random variable with mean � and variance �2. Then by the reproductive property of the
normal distribution, Equation 5-41 in Chapter 5, we conclude that the sample mean

has a normal distribution with mean

and variance

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean will still be approximately normal with mean � and

�
X 
2 �

�2 � �2 � p � �2

n2 �
�2

n

�X �
� � � � p � �

n � �

X �
X1 � X2 � p � Xn

n

p

X

X

The probability distribution of a statistic is called a sampling distribution.
Definition
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240 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

If X1, X2, , Xn is a random sample of size n taken from a population (either finite
or infinite) with mean � and finite variance �2, and if is the sample mean, the lim-
iting form of the distribution of

(7-6)

as , is the standard normal distribution.n S �

Z �
X � �

��1n

X
p

Theorem 7-2:
The Central

Limit Theorem

The normal approximation for depends on the sample size n. Figure 7-6(a) shows the
distribution obtained for throws of a single, six-sided true die. The probabilities are equal
(1�6) for all the values obtained, 1, 2, 3, 4, 5, or 6. Figure 7-6(b) shows the distribution of the
average score obtained when tossing two dice, and Fig. 7-6(c), 7-6(d), and 7-6(e) show the
distributions of average scores obtained when tossing three, five, and ten dice, respectively.
Notice that, while the population (one die) is relatively far from normal, the distribution of
averages is approximated reasonably well by the normal distribution for sample sizes as small
as five. (The dice throw distributions are discrete, however, while the normal is continuous).
Although the central limit theorem will work well for small samples (n � 4, 5) in most cases,
particularly where the population is continuous, unimodal, and symmetric, larger samples will
be required in other situations, depending on the shape of the population. In many cases of
practical interest, if n 
 30, the normal approximation will be satisfactory regardless of the

X

x1 2 3 4 5 6
(a) One die

x1 2 3 4 5 6
(b) Two dice

x1 2 3 4 5 6
(c) Three dice

x1 2 3 4 5 6
(d) Five dice

x1 2 3 4 5 6
(e) Ten dice

Figure 7-6
Distributions of average
scores from throwing
dice. [Adapted with
permission from Box,
Hunter, and Hunter
(1978).]

variance , if the sample size n is large. This is one of the most useful theorems in statis-
tics, called the central limit theorem. The statement is as follows:

�2�n
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 241

shape of the population. If n � 30, the central limit theorem will work if the distribution of the
population is not severely nonnormal.

EXAMPLE 7-13 An electronics company manufactures resistors that have a mean resistance of 100 ohms and
a standard deviation of 10 ohms. The distribution of resistance is normal. Find the probability
that a random sample of n � 25 resistors will have an average resistance less than 95 ohms.

Note that the sampling distribution of is normal, with mean and a
standard deviation of

Therefore, the desired probability corresponds to the shaded area in Fig. 7-7. Standardizing
the point in Fig. 7-7, we find that

and therefore,

The following example makes use of the central limit theorem.

EXAMPLE 7-14 Suppose that a random variable X has a continuous uniform distribution

Find the distribution of the sample mean of a random sample of size n � 40.
The mean and variance of X are � � 5 and . The central limit

theorem indicates that the distribution of is approximately normal with mean and
variance . The distributions of X and are shown in Fig. 7-8.

Now consider the case in which we have two independent populations. Let the first pop-
ulation have mean �1 and variance and the second population have mean �2 and variance
� 2

2. Suppose that both populations are normally distributed. Then, using the fact that linear
�2

1

X� �2�n � 1� 331402 4 � 1�120� 2
X

�X � 5X
�2 � 16 � 422�12 � 1�3

f  1x2 � e1�2, 4 � x � 6

0, otherwise

 � 0.0062
P 1X � 952 � P1Z � �2.52

z �
95 � 100

2
� �2.5

X � 95

�X �
�1n

�
10125

� 2

�X � 100 ohmsX

x10095

X = 2σ

Figure 7-8 The distributions of X and
X for Example 7-14.

Figure 7-7 Probability for Example 7-13.

x5 64

X = 1/120σ

x54 6

2
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242 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

combinations of independent normal random variables follow a normal distribution (see
Equation 5-41), we can say that the sampling distribution of is normal with mean

(7-7)

and variance

(7-8)

If the two populations are not normally distributed and if both sample sizes n1 and n2 are
greater than 30, we may use the central limit theorem and assume that and follow
approximately independent normal distributions. Therefore, the sampling distribution of

is approximately normal with mean and variance given by Equations 7-7 and 7-8,
respectively. If either n1 or n2 is less than 30, the sampling distribution of will still be
approximately normal with mean and variance given by Equations 7-7 and 7-8, provided that
the population from which the small sample is taken is not dramatically different from the nor-
mal. We may summarize this with the following definition.

X1 � X2

X1 � X2

X2X1

 �
2
X1�X2

� �
2
X1

� �
2
X2

�
�2

1

n1
�

�2
2

n2

�X1�X2
� �X1

� �X2
� �1 � �2

X1 � X2

EXAMPLE 7-15 The effective life of a component used in a jet-turbine aircraft engine is a random variable
with mean 5000 hours and standard deviation 40 hours. The distribution of effective life is
fairly close to a normal distribution. The engine manufacturer introduces an improvement
into the manufacturing process for this component that increases the mean life to 5050 hours
and decreases the standard deviation to 30 hours. Suppose that a random sample of n1 � 16
components is selected from the “old” process and a random sample of n2 � 25 components
is selected from the “improved” process. What is the probability that the difference in the two
sample means is at least 25 hours? Assume that the old and improved processes can
be regarded as independent populations.

To solve this problem, we first note that the distribution of is normal with mean 
�1 � 5000 hours and standard deviation hours, and the distribution
of is normal with mean �2 � 5050 hours and standard deviation �
6 hours. Now the distribution of is normal with mean �
50 hours and variance hours2. This sampling distribu-
tion is shown in Fig. 7-9. The probability that is the shaded portion of the
normal distribution in this figure.

X2 � X1 � 25
�2

2�n2 � �2
1�n1 � 1622 � 11022 � 136

�2 � �1 � 5050 � 5000X2 � X1

�2�1n2 � 30�125X2

�1�1n1 � 40�116 � 10
X1

X2 � X1

If we have two independent populations with means and and variances �2
2 and

�2
2 and if and are the sample means of two independent random samples of

sizes n1 and n2 from these populations, then the sampling distribution of

(7-9)

is approximately standard normal, if the conditions of the central limit theorem
apply. If the two populations are normal, the sampling distribution of Z is exactly
standard normal.

Z �
X1 � X2 � 1�1 � �222�2

1�n1 � �2
2�n2

X2X1

�2�1

Definition
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 243

7-33. PVC pipe is manufactured with a mean diameter of
1.01 inch and a standard deviation of 0.003 inch. Find the
probability that a random sample of n � 9 sections of pipe
will have a sample mean diameter greater than 1.009 inch and
less than 1.012 inch.

7-34. Suppose that samples of size n � 25 are selected at
random from a normal population with mean 100 and standard
deviation 10. What is the probability that the sample mean falls
in the interval from

7-35. A synthetic fiber used in manufacturing carpet has
tensile strength that is normally distributed with mean 75.5 psi
and standard deviation 3.5 psi. Find the probability that a ran-
dom sample of n � 6 fiber specimens will have sample mean
tensile strength that exceeds 75.75 psi.

7-36. Consider the synthetic fiber in the previous exercise.
How is the standard deviation of the sample mean changed
when the sample size is increased from n � 6 to n � 49?

7-37. The compressive strength of concrete is normally dis-
tributed with � � 2500 psi and � � 50 psi. Find the probability
that a random sample of n � 5 specimens will have a sample
mean diameter that falls in the interval from 2499 psi to 2510 psi.

7-38. Consider the concrete specimens in the previous
example. What is the standard error of the sample mean?

7-39. A normal population has mean 100 and variance 25.
How large must the random sample be if we want the standard
error of the sample average to be 1.5?

7-40. Suppose that the random variable X has the continu-
ous uniform distribution

f  1x2 � e1, 0 � x � 1

0, otherwise

�X � 1.8�
 X  to �X � 1.0�

 X ?

Suppose that a random sample of n � 12 observations is
selected from this distribution. What is the probability distribu-
tion of Find the mean and variance of this quantity.

7-41. Suppose that X has a discrete uniform distribution

A random sample of n � 36 is selected from this population.
Find the probability that the sample mean is greater than 2.1
but less than 2.5, assuming that the sample mean would be
measured to the nearest tenth.

7-42. The amount of time that a customer spends waiting at an
airport check-in counter is a random variable with mean 8.2 min-
utes and standard deviation 1.5 minutes. Suppose that a random
sample of n � 49 customers is observed. Find the probability
that the average time waiting in line for these customers is
(a) Less than 10 minutes
(b) Between 5 and 10 minutes
(c) Less than 6 minutes

7-43. A random sample of size n1 � 16 is selected from a
normal population with a mean of 75 and a standard deviation
of 8. A second random sample of size n2 � 9 is taken from an-
other normal population with mean 70 and standard deviation
12. Let and be the two sample means. Find
(a) The probability that exceeds 4
(b) The probability that 

7-44. A consumer electronics company is comparing the
brightness of two different types of picture tubes for use in its
television sets. Tube type A has mean brightness of 100 and
standard deviation of 16, while tube type B has unknown

3.5 � X1 � X2 � 5.5
X1 � X2

X2X1

f 1x2 � e 1�3, x � 1, 2, 3

0, otherwise

X � 6?

Corresponding to the value in Fig. 7-9, we find that

and we find that

EXERCISES FOR SECTION 7-5

 � 0.9838
 P1X2 � X1 
 252 � P 1Z 
 �2.142

z �
25 � 502136

� �2.14

x2 � x1 � 25

x2 – x11007550250

Figure 7-9 The 
sampling distribution
of in 
Example 7-15.

X2 � X1
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244 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

mean brightness, but the standard deviation is assumed to be
identical to that for type A. A random sample of n � 25 tubes
of each type is selected, and is computed. If �B

equals or exceeds �A, the manufacturer would like to adopt
type B for use. The observed difference is 
What decision would you make, and why?

7-45. The elasticity of a polymer is affected by the concen-
tration of a reactant. When low concentration is used, the true
mean elasticity is 55, and when high concentration is used the
mean elasticity is 60. The standard deviation of elasticity is 4,
regardless of concentration. If two random samples of size 16
are taken, find the probability that .

Supplemental Exercises

7-46. Suppose that a random variable is normally distrib-
uted with mean � and variance �2, and we draw a random
sample of five observations from this distribution. What is the
joint probability density function of the sample?

7-47. Transistors have a life that is exponentially distributed
with parameter �. A random sample of n transistors is taken.
What is the joint probability density function of the sample?

7-48. Suppose that X is uniformly distributed on the interval
from 0 to 1. Consider a random sample of size 4 from X. What
is the joint probability density function of the sample?

7-49. A procurement specialist has purchased 25 resistors
from vendor 1 and 30 resistors from vendor 2. Let X1,1,
X1,2, , X1,25 represent the vendor 1 observed resistances,
which are assumed to be normally and independently distrib-
uted with mean 100 ohms and standard deviation 1.5 ohms.
Similarly, let X2,1, X2,2, , X2,30 represent the vendor 2 ob-
served resistances, which are assumed to be normally and in-
dependently distributed with mean 105 ohms and standard
deviation of 2.0 ohms. What is the sampling distribution of

?

7-50. Consider the resistor problem in Exercise 7-49. What
is the standard error of ?

7-51. A random sample of 36 observations has been drawn
from a normal distribution with mean 50 and standard devia-
tion 12. Find the probability that the sample mean is in the
interval .

7-52. Is the assumption of normality important in Exercise
7-51? Why?

7-53. A random sample of n � 9 structural elements is
tested for compressive strength. We know that the true mean

47 � X � 53

X1 � X2

X1 � X2

p

p

X high � X low 
 2

xB � xA � 3.5.

XB � XA

compressive strength � � 5500 psi and the standard deviation
is � � 100 psi. Find the probability that the sample mean
compressive strength exceeds 4985 psi.

7-54. A normal population has a known mean 50 and
known variance �2 � 2. A random sample of n � 16 is se-
lected from this population, and the sample mean is 
How unusual is this result?

7-55. A random sample of size n � 16 is taken from a nor-
mal population with � � 40 and �2 � 5. Find the probability
that the sample mean is less than or equal to 37.

7-56. A manufacturer of semiconductor devices takes a
random sample of 100 chips and tests them, classifying each
chip as defective or nondefective. Let Xi � 0 if the chip is
nondefective and Xi � 1 if the chip is defective. The sample
fraction defective is

What is the sampling distribution of the random variable ?

7-57. Let X be a random variable with mean � and variance
�2. Given two independent random samples of sizes n1 and n2,
with sample means and , show that

is an unbiased estimator for . If and are independent,
find the value of a that minimizes the standard error of .

7-58. A random variable x has probability density function

Find the maximum likelihood estimator for �.

7-59. Let 
Show that is the maximum likelihood 
estimator for �.

7-60. Let 0 � � 1, and 0 � �
Show that is the maximum likelihood
estimator for � and that is an unbiased estimator for �.	̂

	̂ � �11�n2 g n
i�1 ln1Xi2

�.�xf  1x2 � 11��2x 
11��2��,

	̂ � �n� 1ln wn
i�1 Xi2

f  1x2 � �x��1, 0 � � � �, and 0 � x � 1.

f  1x2 �
1

2�3 x2e�x��,  0 � x � �, 0 � � � �

X
X2X1�

X � aX1 � 11 � a2X2, 0 � a � 1

X2X1

P̂

P̂ �
X1 � X2 � p � X100

100

x � 52.

c07.qxd  5/15/02  10:18 M  Page 244 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



7-5 SAMPLING DISTRIBUTIONS OF MEANS 245

MIND-EXPANDING EXERCISES

7-61. A lot consists of N transistors, and of these M
(M � N) are defective. We randomly select two transis-
tors without replacement from this lot and determine
whether they are defective or nondefective. The ran-
dom variable

Determine the joint probability function for X1 and X2.
What are the marginal probability functions for X1 and
X2? Are X1 and X2 independent random variables?

7-62. When the sample standard deviation is based on
a random sample of size n from a normal population, it
can be shown that S is a biased estimator for �. Spe-
cifically,

(a) Use this result to obtain an unbiased estimator for �
of the form cnS, when the constant cn depends on the
sample size n.

(b) Find the value of cn for n � 10 and n � 25.
Generally, how well does S perform as an estimator
of for large n with respect to bias?

7-63. A collection of n randomly selected parts is
measured twice by an operator using a gauge. Let Xi and
Yi denote the measured values for the ith part. Assume
that these two random variables are independent and
normally distributed and that both have true mean �i and
variance �2.

(a) Show that the maximum likelihood estimator of �2

is .

(b) Show that is a biased estimator for �2. What
happens to the bias as n becomes large?

(c) Find an unbiased estimator for �2.

7-64. Consistent Estimator. Another way to measure
the closeness of an estimator to the parameter � is in
terms of consistency. If is an estimator of � based on
a random sample of n observations, is consistent for
� if

Thus, consistency is a large-sample property, describing
the limiting behavior of as n tends to infinity. It is
usually difficult to prove consistency using the above
definition, although it can be done from other ap-
proaches. To illustrate, show that is a consistent esti-
mator of � (when ) by using Chebyshev’s
inequality. See Section 5-10 (CD Only).

7-65. Order Statistics. Let X1, X2, , Xn be a
random sample of size n from X, a random variable hav-
ing distribution function F(x). Rank the elements in or-
der of increasing numerical magnitude, resulting in X(1),
X(2), , X(n), where X(1) is the smallest sample element
(X(1) � min{X1, X2, , Xn}) and X(n) is the largest sam-
ple element (X(n) � max{X1, X2, , Xn}). X(i) is called
the ith order statistic. Often the distribution of some of
the order statistics is of interest, particularly the mini-
mum and maximum sample values. X(1) and X(n), respec-
tively. Prove that the cumulative distribution functions
of these two order statistics, denoted respectively by

and are

Prove that if X is continuous with probability density
function f (x), the probability distributions of X(1) and
X(n) are

7-66. Continuation of Exercise 7-65. Let X1, X2, ,
Xn be a random sample of a Bernoulli random variable
with parameter p. Show that

Use the results of Exercise 7-65.

7-67. Continuation of Exercise 7-65. Let X1, X2, ,
Xn be a random sample of a normal random variable
with mean � and variance �2. Using the results of
Exercise 7-65, derive the probability density functions
of X(1) and X(n).

p

 P1X112 � 02 � 1 � pn

 P1X1n2 � 12 � 1 � 11 � p2n

p

 fX1n2 1t2 � n 3F1t2 4n�1f  1t2
 fX11 2 1t2 � n 31 � F1t2 4n�1f  1t2

 FX1n2 1t2 � 3F1t2 4n
 FX112 1t2 � 1 � 31 � F1t2 4n

FX1n2 1t2FX112 1t2

p
p

p

p

�2 � 	
X


̂n

lim
nS	

 P 1 0
̂n � � 0 � �2 � 1


̂n


̂n


̂

�̂2

�̂2 � 11�4n2 g n
i�1 1Xi � Yi22

�

E1S 2 � �12� 1n � 12 1n�22�  3 1n � 12�2 4

Xi � µ
1, if the ith transistor

is nondefective
0, if the ith transistor

is defective

 i � 1, 2
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246 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

In the E-book, click on any
term or concept below to
go to that subject.

Bias in parameter 
estimation

Central limit theorem
Estimator versus 

estimate
Likelihood function
Maximum likelihood

estimator

Mean square error of an
estimator

Minimum variance 
unbiased estimator

Moment estimator
Normal distribution as

the sampling distribu-
tion of a sample mean

Normal distribution as
the sampling distri-
bution of the differ-

ence in two sample
means

Parameter estimation
Point estimator
Population or distribu-

tion moments
Sample moments
Sampling distribution
Standard error and 

estimated standard
error of an estimator

Statistic
Statistical inference
Unbiased estimator

CD MATERIAL

Bayes estimator
Bootstrap
Posterior distribution
Prior distribution

IMPORTANT TERMS AND CONCEPTS

MIND-EXPANDING EXERCISES

7-68. Continuation of Exercise 7-65. Let X1, X2, ,
Xn be a random sample of an exponential random vari-
able of parameter �. Derive the cumulative distribution
functions and probability density functions for X(1) and
X(n). Use the result of Exercise 7-65.

7-69. Let X1, X2, , Xn be a random sample of a
continuous random variable with cumulative distribu-
tion function F(x). Find

and

7-70. Let X be a random variable with mean � and
variance �2, and let X1, X2, , Xn be a random sample
of size n from X. Show that the statistic 

is an unbiased estimator for �2 for an
appropriate choice for the constant k. Find this value 
for k.

7-71. When the population has a normal distribution,
the estimator

is sometimes used to estimate the population standard
deviation. This estimator is more robust to outliers than
the usual sample standard deviation and usually does

not differ much from S when there are no unusual
observations.
(a) Calculate and S for the data 10, 12, 9, 14, 18, 15,

and 16.
(b) Replace the first observation in the sample (10) with

50 and recalculate both S and .

7-72. Censored Data. A common problem in indus-
try is life testing of components and systems. In this
problem, we will assume that lifetime has an exponen-
tial distribution with parameter �, so is 
an unbiased estimate of �. When n components are tested
until failure and the data X1, X2, , Xn represent actual
lifetimes, we have a complete sample, and is indeed an
unbiased estimator of �. However, in many situations, the
components are only left under test until r � n failures
have occurred. Let Y1 be the time of the first failure, Y2 be
the time of the second failure, , and Yr be the time of the
last failure. This type of test results in censored data.
There are n � r units still running when the test is termi-
nated. The total accumulated test time at termination is

(a) Show that is an unbiased estimator for �.
[Hint: You will need to use the memoryless property
of the exponential distribution and the results of
Exercise 7-68 for the distribution of the minimum of
a sample from an exponential distribution with
parameter �.]

(b) It can be shown that How does
this compare to in the uncensored experiment?V1X 2 V1Tr�r2 � 1� 1�2r2.

�̂ � Tr�r

Tr � a
r

i�1
 Yi � 1n � r2Yr

p

X
p

�̂ � 1��̂ � X

�̂

�̂

p, 0 Xn � X 0 2�0.6745

�̂ � median 1 0 X1 � X 0 , 0 X2 � X 0 ,

1Xi�1 � Xi22
V � kg n�1

i�1

p

E 3F 1X 1122 4

E 3F 1X 1n22 4

p

p
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7-2.2 Proof That S is a Biased Estimator of � (CD Only)

We proved that the sample variance is an unbiased estimator of the population variance, that
is, E(S2) � �2, and that this result does not depend on the form of the distribution. However,
the sample standard deviation is not an unbiased estimator of the population standard devia-
tion. This is easy to demonstrate for the case where the random variable X follows a normal
distribution.

Let X1, X2, p , Xn be a random sample of size n from a normal population with mean �
and variance �2. Now it can be shown that the distribution of the random variable

is chi-square with n � 1 degrees of freedom, denoted (the chi-squared distribution
was introduced in our discussion of the gamma distribution in Chapter 4, and the above re-
sult will be presented formally in Chapter 8). Therefore the distribution of S2 is 
times a random variable. So when sampling from a normal distribution, the expected
value of S2 is

because the mean of a chi-squared random variable with n � 1 degrees of freedom is n � 1.
Now it follows that the distribution of

is a chi distribution with n � 1 degrees of freedom, denoted . The expected value of S can
be written as

The mean of the chi distribution with n � 1 degrees of freedom is

where the gamma function Then

Although S is a biased estimator of �, the bias gets small fairly quickly as the sample size
n increases. For example, note that cn � 0.94 for a sample of n � 5, cn � 0.9727 for a sample
of n � 10, and cn � 0.9896 or very nearly unity for a sample of n � 25.

 � cn �

 E 1S 2 � B 2
n � 1

  

� 1n�22
� 3 1n � 12 �2 4   �

�1r2 � �
�

0

yr�1e�y dy.

E 1	n�12 � 22 
� 1n�22

� 3 1n � 12�2 4

E1S 2 � E   a �1n � 1
 	 n�1b �

�1n � 1
  E1	n�12

	n�1

11n � 12S
�

E1S22 � E   a �2

n � 1
 	2 

n�1b �
�2

n � 1
 E 1	2 

n�12 �
�2

n � 1
  1n � 12 � �2

	2
n�1

�2� 1n � 12
	2

n�1

1n � 12  S 2

�2
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7-2

Usually B � 100 or 200 of these bootstrap samples are taken. Let be the
sample mean of the bootstrap estimates. The bootstrap estimate of the standard error of is
just the sample standard deviation of the , or

(S7-1)

In the bootstrap literature, B � 1 in Equation S7-1 is often replaced by B. However, for
the large values usually employed for B, there is little difference in the estimate produced
for .

EXAMPLE S7-1 The time to failure of an electronic module used in an automobile engine controller is tested
at an elevated temperature in order to accelerate the failure mechanism. The time to failure
is exponentially distributed with unknown parameter 
. Eight units are selected at random
and tested, with the resulting failure times (in hours): x1 � 11.96, x2 � 5.03, x3 � 67.40,
x4 � 16.07, x5 � 31.50, x6 � 7.73, x7 � 11.10, and x8 � 22.38. Now the mean of an expo-
nential distribution is � � 1�
, so E(X ) � 1�
, and the expected value of the sample average
is . Therefore, a reasonable way to estimate 
 is with . For our sample,

, so our estimate of � is . To find the bootstrap standard error
we would now obtain B � 200 (say) samples of n � 8 observations each from an exponential
distribution with parameter 
 � 0.0462. The following table shows some of these results:

�̂ � 1�21.65 � 0.0462x � 21.65
�̂ � 1�XE1X2 � 1��

s�̂

s�̂ �R a
B

i�1
 1�̂*

i � �*22
B � 1

�̂*
i

�̂

�* � 11�B2  gB
i�1 �̂*i

7-2.5 Bootstrap Estimate of the Standard Error (CD Only)

There are situations in which the standard error of the point estimator is unknown. Usually,
these are cases where the form of is complicated, and the standard expectation and variance
operators are difficult to apply. A computer-intensive technique called the bootstrap that was
developed in recent years can be used for this problem.

Suppose that we are sampling from a population that can be modeled by the probability
distribution . The random sample results in data values and we obtain as
the point estimate of . We would now use a computer to obtain bootstrap samples from the
distribution , and for each of these samples we calculate the bootstrap estimate of �.
This results in

�̂*f 1x; �̂2 �
�̂x1, x2, p , xnf 1x; �2

�̂

Bootstrap Sample Observations Bootstrap Estimate

1

2

B �̂*
Bx*

1, x
*
2, p , x*

n

ooo
�̂*

2x*
1, x

*
2, p , x*

n

�̂*
1x*

1, x
*
2, p , x*

n

Bootstrap Sample Observations Bootstrap Estimate

1 8.01, 28.85, 14.14, 59.12, 3.11, 32.19, 5.26, 14.17

2 33.27, 2.10, 40.17, 32.43, 6.94, 30.66, 18.99, 5.61

200 40.26, 39.26, 19.59, 43.53, 9.55, 7.07, 6.03, 8.94  �̂*
200 � 0.0459

ooo
 �̂*

2 � 0.0470

 �̂*
1 � 0.0485
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7-3

The sample average of the (the bootstrap estimates) is 0.0513, and the standard deviation
of these bootstrap estimates is 0.020. Therefore, the bootstrap standard error of is 0.020. In
this case, estimating the parameter � in an exponential distribution, the variance of the esti-
mator we used, , is known. When n is large, Therefore the estimated standard
error of is . Notice that this result agrees reasonably
closely with the bootstrap standard error.

Sometimes we want to use the bootstrap in situations in which the form of the probabil-
ity distribution is unknown. In these cases, we take the n observations in the sample as the
population and select B random samples each of size n, with replacement, from this popula-
tion. Then Equation S7-1 can be applied as described above. The book by Efron and
Tibshirani (1993) is an excellent introduction to the bootstrap.

7-3.3 Bayesian Estimation of Parameters (CD Only)

This book uses methods of statistical inference based on the information in the sample data.
In effect, these methods interpret probabilities as relative frequencies. Sometimes we call
probabilities that are interpreted in this manner objective probabilities. There is another ap-
proach to statistical inference, called the Bayesian approach, that combines sample informa-
tion with other information that may be available prior to collecting the sample. In this section
we briefly illustrate how this approach may be used in parameter estimation.

Suppose that the random variable X has a probability distribution that is a function of one
parameter �. We will write this probability distribution as This notation implies that
the exact form of the distribution of X is conditional on the value assigned to �. The classical ap-
proach to estimation would consist of taking a random sample of size n from this distribution
and then substituting the sample values xi into the estimator for �. This estimator could have
been developed using the maximum likelihood approach, for example.

Suppose that we have some additional information about � and that we can summarize
that information in the form of a probability distribution for �, say, f(�). This probability dis-
tribution is often called the prior distribution for �, and suppose that the mean of the prior is
�0 and the variance is . This is a very novel concept insofar as the rest of this book is con-
cerned because we are now viewing the parameter � as a random variable. The probabilities
associated with the prior distribution are often called subjective probabilities, in that they
usually reflect the analyst’s degree of belief regarding the true value of �. The Bayesian
approach to estimation uses the prior distribution for �, f(�), and the joint probability distri-
bution of the sample, say to find a posterior distribution for �, say,

This posterior distribution contains information both from the sample and
the prior distribution for �. In a sense, it expresses our degree of belief regarding the true value
of � after observing the sample data. It is easy conceptually to find the posterior distribution.
The joint probability distribution of the sample X1, X2, p , Xn and the parameter � (remember
that � is a random variable) is 

and the marginal distribution of X1, X2, p , Xn is

f  1x1, x2, p , xn2 � µ a�  f 1x1, x2, p , xn, �2, � discrete

�
�

��
 
f 1x1, x2, p , xn, �2 d�, � continuous

f 1x1, x2, p , xn, �2 � f 1x1, x2, p , xn 
0

 
�2 f 1�2

f 1� 0  x1, x2, p , xn2.
f  1x1, x2, p , xn  0  �2,

�2
0

f 1x 0 �2.

2�̂2�n � 210.046222�8 � 0.016�̂

V 1�̂2 � �2�n.�̂

�̂
�̂*

i
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7-4

Therefore, the desired distribution is 

We define the Bayes estimator of � as the value that corresponds to the mean of the poste-
rior distribution 

Sometimes, the mean of the posterior distribution of � can be determined easily. As a
function of �, is a probability density function and are just con-
stants. Because � enters into only through if 
as a function of � is recognized as a well-known probability function, the posterior mean of �
can be deduced from the well-known distribution without integration or even calculation of

EXAMPLE S7-2 Let X1, X2, p , Xn be a random sample from the normal distribution with mean � and variance
�2, where � is unknown and �2 is known. Assume that the prior distribution for � is normal
with mean �0 and variance ; that is

The joint probability distribution of the sample is

Thus, the joint probability distribution of the sample and � is

Upon completing the square in the exponent

where hi(x1, p , xn, �
2, �0, ) is a function of the observed values, �2, �0, and .

Now, because f(x1, p , xn) does not depend on �,

f 1� 0  x1, p , xn2 � e
� 11�22  a 1

�0
2

 	  

1

�2�n
b  c�2 �  a1�2�n2�0	�2

0 x
 

�2
0 	�2�n

bd h31x1, p , xn, �
2, �0, �

2
02

�2
0�2

0

f 1x1, x2, p , xn, �2 � e
� 11�22 a 1

�0
2

  	  

1

�2�n
b  c�2�a 1�

2�n2�0

�2
0	�2�n

 	  

x�2
0

�2
0	�2�n

bd
2

 h21x1, p , xn, �
2, �0, �

2
02

 � e
� 11�22 ca 1

�0
2

  	  

1

�2�n
b �2�2 a�0

�0
2

 	  

x

�2�n
b �d h11x1, p , xn, �

2, �0, �
2
02

 f 1x1, x2, p , xn, �2 �
1

12
�22n�212
�0
 e�11�22 311��2

0	n��22�2� 12�0��2
0	2a  xi��22�	a  x2

i ��2	�2
0 ��2

04

 �
1

12
�22n�2 e�11�2�221ax2
i �2�a xi	n�22
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0  �2 �

1

12
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1xi��22

f  1�2 �
112
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f 1x1, p , xn2.

f 1x1, p , xn, �2,f 1x1, p , xn, �2f 1� 0 x1, p , xn2
x1, p , xnf  1� 0  x1, p , xn2

f  1� 0  x1, x2, p , xn2.
�
�

f 1� 0  x1, x2, p , xn2 �
f 1x1, x2, p , xn, �2
f 1x1, x2, p , xn2
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This is recognized as a normal probability density function with posterior mean

and posterior variance

Consequently, the Bayes estimate of � is a weighted average of �0 and . For purposes of
comparison, note that the maximum likelihood estimate of � is .

To illustrate, suppose that we have a sample of size n � 10 from a normal distribution
with unknown mean � and variance �2 � 4. Assume that the prior distribution for � is nor-
mal with mean �0 � 0 and variance . If the sample mean is 0.75, the Bayes estimate
of � is

Note that the maximum likelihood estimate of � is .

There is a relationship between the Bayes estimator for a parameter and the maximum
likelihood estimator of the same parameter. For large sample sizes, the two are nearly
equivalent. In general, the difference between the two estimators is small compared to

In practical problems, a moderate sample size will produce approximately the same
estimate by either the Bayes or maximum likelihood method, if the sample results are con-
sistent with the assumed prior information. If the sample results are inconsistent with the
prior assumptions, the Bayes estimate may differ considerably from the maximum likeli-
hood estimate. In these circumstances, if the sample results are accepted as being correct,
the prior information must be incorrect. The maximum likelihood estimate would then be
the better estimate to use.

If the sample results are very different from the prior information, the Bayes estimator
will always tend to produce an estimate that is between the maximum likelihood estimate and
the prior assumptions. If there is more inconsistency between the prior information and the
sample, there will be more difference between the two estimates.

EXERCISES FOR SECTION 7-3.3

1�1n.

x � 0.75

14�1020  110.752
1  14�102 �

0.75
1.4

� 0.536

�2
0 � 1

�̂ � x
x

a 1

�2
0


1

�2�n
b�1

�
�2

0 1�2�n2
�2

0  �2�n

1�2�n2�0  �2
0 x

�2
0  �2�n

S7-1. Suppose that X is a normal random variable
with unknown mean � and known variance �2. The prior
distribution for � is a normal distribution with mean �0 and
variance . Show that the Bayes estimator for � becomes
the maximum likelihood estimator when the sample size n is
large.
S7-2. Suppose that X is a normal random variable with un-
known mean � and known variance �2. The prior distribution
for � is a uniform distribution defined over the interval [a, b].

�2
0

(a) Find the posterior distribution for �.
(b) Find the Bayes estimator for �.

S7-3. Suppose that X is a Poisson random variable with pa-
rameter 
. Let the prior distribution for 
 be a gamma distri-
bution with parameters m  1 and .
(a) Find the posterior distribution for 
.
(b) Find the Bayes estimator for 
.

S7-4. Suppose that X is a normal random variable with un-
known mean and known variance �2 � 9. The prior distribution

1m  12��0
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7-6

for � is normal with �0 � 4 and � 1. A random sample of 
n � 25 observations is taken, and the sample mean is
(a) Find the Bayes estimate of �.
(b) Compare the Bayes estimate with the maximum likeli-

hood estimate.

S7-5. The weight of boxes of candy is a normal random
variable with mean � and variance pound. The prior dis-
tribution for � is normal with mean 5.03 pound. and variance

pound. A random sample of 10 boxes gives a sample
mean of pound.
(a) Find the Bayes estimate of �.

x � 5.05
1�25

1�10

x � 4.85.
�2

0 (b) Compare the Bayes estimate with the maximum likeli-
hood estimate.

S7-6. The time between failures of a machine has an expo-
nential distribution with parameter 
. Suppose that the prior
distribution for 
 is exponential with mean 100 hours. Two
machines are observed, and the average time between failures
is hours.
(a) Find the Bayes estimate for 
.
(b) What proportion of the machines do you think will fail be-

fore 1000 hours?

x � 1125
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