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LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1.

U AN

Construct confidence intervals on the mean of a normal distribution, using either the normal

distribution or the t distribution method

. Construct confidence intervals on the variance and standard deviation of a normal distribution
. Construct confidence intervals on a population proportion
. Construct prediction intervals for a future observation

. Construct a tolerance interval for a normal population
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8-1

CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

6. Explain the three types of interval estimates: confidence intervals, prediction intervals, and
tolerance intervals

7. Use the general method for constructing a confidence interval

CD MATERIAL

8. Use the bootstrap technique to construct a confidence interval

Answers for many odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

INTRODUCTION

In the previous chapter we illustrated how a parameter can be estimated from sample data.
However, it is important to understand how good is the estimate obtained. For example, sup-
pose that we estimate the mean viscosity of a chemical product to be L = ¥ = 1000. Now
because of sampling variability, it is almost never the case that p. = x. The point estimate says
nothing about how close [u is to . Is the process mean likely to be between 900 and 1100? Or
is it likely to be between 990 and 1010? The answer to these questions affects our decisions
regarding this process. Bounds that represent an interval of plausible values for a parameter
are an example of an interval estimate. Surprisingly, it is easy to determine such intervals in
many cases, and the same data that provided the point estimate are typically used.

An interval estimate for a population parameter is called a confidence interval. We can-
not be certain that the interval contains the true, unknown population parameter—we only use
a sample from the full population to compute the point estimate and the interval. However,
the confidence interval is constructed so that we have high confidence that it does contain the
unknown population parameter. Confidence intervals are widely used in engineering
and the sciences.

A tolerance interval is another important type of interval estimate. For example, the
chemical product viscosity data might be assumed to be normally distributed. We might like
to calculate limits that bound 95% of the viscosity values. For a normal distribution, we know
that 95% of the distribution is in the interval

p — 1.960, p + 1.960 (8-1)

However, this is not a useful tolerance interval because the parameters p and o are unknown.
Point estimates such as X and s can be used in Equation 8-1 for p and o. However, we need to
account for the potential error in each point estimate to form a tolerance interval for the
distribution. The result is an interval of the form

X — ks, x + ks (8-2)

where k is an appropriate constant (that is larger than 1.96 to account for the estimation
error). As for a confidence interval, it is not certain that Equation 8-2 bounds 95% of the dis-
tribution, but the interval is constructed so that we have high confidence that it does.
Tolerance intervals are widely used and, as we will subsequently see, they are easy to cal-
culate for normal distributions.
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Confidence and tolerance intervals bound unknown elements of a distribution. In this
chapter you will learn to appreciate the value of these intervals. A prediction interval pro-
vides bounds on one (or more) future observations from the population. For example, a
prediction interval could be used to bound a single, new measurement of viscosity—another
useful interval. With a large sample size, the prediction interval for normally distributed data
tends to the tolerance interval in Equation 8-1, but for more modest sample sizes the predic-
tion and tolerance intervals are different.

Keep the purpose of the three types of interval estimates clear:

e A confidence interval bounds population or distribution parameters (such as the mean
viscosity).

e A tolerance interval bounds a selected proportion of a distribution.
e A prediction interval bounds future observations from the population or distribution.

8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE KNOWN

The basic ideas of a confidence interval (CI) are most easily understood by initially consider-
ing a simple situation. Suppose that we have a normal population with unknown mean . and
known variance o®. This is a somewhat unrealistic scenario because typically we know the
distribution mean before we know the variance. However, in subsequent sections we will
present confidence intervals for more general situations.

8-2.1 Development of the Confidence Interval and its Basic Properties

Suppose that X, X,, ..., X, is a random sample from a normal distribution with unknown
mean . and known variance 0. From the results of Chapter 5 we know that the sample
mean X is normally distributed with mean w and variance o/n. We may standardize X
by subtracting the mean and dividing by the standard deviation, which results in the
variable

_ X

Z= o/Nn

(8-3)

Now Z has a standard normal distribution.

A confidence interval estimate for w is an interval of the form / = w = u, where the end-
points / and u are computed from the sample data. Because different samples will produce
different values of / and u, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement is true:

PL=p=U}=1-a (8-4)
where 0 = a = 1. There is a probability of 1 — « of selecting a sample for which the CI will
contain the true value of . Once we have selected the sample, so that X; = x, X; = x,, ...,

X, = x,, and computed / and u, the resulting confidence interval for w is

I=p=u (8-5)
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Definition

EXAMPLE 8-1

The end-points or bounds / and u are called the lower- and upper-confidence limits, respec-
tively, and 1 — a is called the confidence coefficient.

In our problem situation, because Z = (X — p)/(0/Vn) has a standard normal distribu-
tion, we may write

X—n
P —za/ZSWSza/z =1—-a«

Now manipulate the quantities inside the brackets by (1) multiplying through by o/ Vi, (2)
subtracting X from each term, and (3) multiplying through by —1. This results in

P{X—zu/z\(;ﬁsMsX+za/2\(;ﬁ}=l—a (8-6)

From consideration of Equation 8-4, the lower and upper limits of the inequalities in Equation
8-6 are the lower- and upper-confidence limits L and U, respectively. This leads to the fol-
lowing definition.

If x is the sample mean of a random sample of size n from a normal population with
known variance o2, a 100(1 — a)% CI on p is given by

35 = Z(x/zo'/\/ﬁ = (L% =x + Za/ZO-/\/’; (8-7)

where z,, is the upper 100a/2 percentage point of the standard normal distribution.

ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic
materials. The Charpy V-notch (CVN) technique measures impact energy and is often used to
determine whether or not a material experiences a ductile-to-brittle transition with decreasing
temperature. Ten measurements of impact energy (J) on specimens of A238 steel cut at 60°C
are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that
impact energy is normally distributed with ¢ = 1J. We want to find a 95% CI for ., the mean
impact energy. The required quantities are z,/,, = zpps = 1.96, n = 10, o = 1, and
X = 64.46. The resulting 95% CI is found from Equation 8-7 as follows:

x o < <7+ o
X —Zypn—F— ==Xtz —F—
/2 /n W 04/2\/’;
1
64.46 — 1.96 —F—==pn = 6446 + 1.96

V10 V10

63.84 = . = 65.08

That is, based on the sample data, a range of highly plausible vaules for mean impact energy
for A238 steel at 60°C is 63.84J = . = 65.08J.

Interpreting a Confidence Interval
How does one interpret a confidence interval? In the impact energy estimation problem in
Example 8-1 the 95% Cl is 63.84 = p = 65.08, so it is tempting to conclude that . is within
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Figure 8-1 Repeated
construction of a con-
fidence interval for .

this interval with probability 0.95. However, with a little reflection, it’s easy to see that this can-
not be correct; the true value of . is unknown and the statement 63.84 = . = 65.08 is either
correct (true with probability 1) or incorrect (false with probability 1). The correct interpretation
lies in the realization that a CI is a random interval because in the probability statement defin-
ing the end-points of the interval (Equation 8-4), L and U are random variables. Consequently,
the correct interpretation of a 100(1 — )% CI depends on the relative frequency view of prob-
ability. Specifically, if an infinite number of random samples are collected and a 100(1 — «)%
confidence interval for w is computed from each sample, 100(1 — a)% of these intervals will
contain the true value of .

The situation is illustrated in Fig. 8-1, which shows several 100(1 — o)% confidence
intervals for the mean w of a normal distribution. The dots at the center of the intervals indi-
cate the point estimate of w (that is, x). Notice that one of the intervals fails to contain the true
value of . If this were a 95% confidence interval, in the long run only 5% of the intervals
would fail to contain .

Now in practice, we obtain only one random sample and calculate one confidence interval.
Since this interval either will or will not contain the true value of ., it is not reasonable to attach
a probability level to this specific event. The appropriate statement is the observed interval [/, u]
brackets the true value of . with confidence 100(1 — «). This statement has a frequency inter-
pretation; that is, we don’t know if the statement is true for this specific sample, but the method
used to obtain the interval [/, u] yields correct statements 100(1 — «)% of the time.

Confidence Level and Precision of Estimation

Notice in Example 8-1 that our choice of the 95% level of confidence was essentially
arbitrary. What would have happened if we had chosen a higher level of confidence, say, 99%?
In fact, doesn’t it seem reasonable that we would want the higher level of confidence? At a =
0.01, we find z,, = 29012 = Zo00s = 2.58, while for a = 0.05, zy g5 = 1.96. Thus, the
length of the 95% confidence interval is

2(1.960/\n) = 3.926/\/n
whereas the length of the 99% Cl is
2(2.580/\Vn) = 5.160/\/n
Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence

in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation o,
the higher the confidence level, the longer the resulting CI.

1 2 3 45 6 7 8 9 10111213 14 15 16
Interval number
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Figure 8-2 Error in
estimating . with Xx.

E = error = |E—u|

——
l=X-zypol\n x i U =X +2400/\0

The length of a confidence interval is a measure of the precision of estimation. From the
preceeding discussion, we see that precision is inversely related to the confidence level. It is de-
sirable to obtain a confidence interval that is short enough for decision-making purposes and
that also has adequate confidence. One way to achieve this is by choosing the sample size n to
be large enough to give a CI of specified length or precision with prescribed confidence.

8-2.2 Choice of Sample Size

Definition

EXAMPLE 8-2

The precision of the confidence interval in Equation 8-7 is 2z,/,0/ V/n. This means that in
using ¥ to estimate p., the error £ = |X — p| is less than or equal to z,,0/Vn with
confidence 100(1 — «). This is shown graphically in Fig. 8-2. In situations where the sam-
ple size can be controlled, we can choose 7 so that we are 100(1 — «) percent confident that
the error in estimating . is less than a specified bound on the error E. The appropriate sam-
ple size is found by choosing 7 such that z, ,0/Vn = E. Solving this equation gives the fol-
lowing formula for 7.

If x is used as an estimate of w, we can be 100(1 — «)% confident that the error
|x — p| will not exceed a specified amount £ when the sample size is

2
n= (Z“;f G) (8-8)

If the right-hand side of Equation 8-8 is not an integer, it must be rounded up. This will ensure
that the level of confidence does not fall below 100(1 — a)%. Notice that 2E is the length of
the resulting confidence interval.

To illustrate the use of this procedure, consider the CVN test described in Example 8-1, and
suppose that we wanted to determine how many specimens must be tested to ensure that the
95% CI on . for A238 steel cut at 60°C has a length of at most 1.0J. Since the bound on error
in estimation E is one-half of the length of the CI, to determine » we use Equation 8-8 with
E=105,0=1,and z,,, = 0.025. The required sample size is 16

_ Za/ZO- 2 _ (196)1 :|2 _
n—<E>—[ 05 = 15.37

and because n must be an integer, the required sample size is n = 16.

Notice the general relationship between sample size, desired length of the confidence
interval 2E, confidence level 100(1 — «), and standard deviation o:

e Asthe desired length of the interval 2E decreases, the required sample size # increases
for a fixed value of o and specified confidence.
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e As o increases, the required sample size # increases for a fixed desired length 2F and
specified confidence.

e As the level of confidence increases, the required sample size n increases for fixed
desired length 2F and standard deviation o.

8-2.3 One-Sided Confidence Bounds

Definition

The confidence interval in Equation 8-7 gives both a lower confidence bound and an upper
confidence bound for . Thus it provides a two-sided CI. It is also possible to obtain one-sided
confidence bounds for . by setting either / = —° or u = % and replacing z,, by z,.

A 100(1 — a)% upper-confidence bound for . is
W=u=3x+z,0/Vn (8-9)
and a 100(1 — )% lower-confidence bound for . is

X —zyo/Vn=1=p (8-10)

8-2.4 General Method to Derive a Confidence Interval

It is easy to give a general method for finding a confidence interval for an unknown parame-
ter 0. Let X, X,, ..., X, be a random sample of n observations. Suppose we can find a statistic
2(X1, X5, ..., X,; 0) with the following properties:

1. gX,, X5, ..., X,; 0) depends on both the sample and 6.

2. The probability distribution of g(X|, X5, ..., X,; 8) does not depend on 6 or any other
unknown parameter.

In the case considered in this section, the parameter 8 = . The random variable g (X}, X, ...,
X,; w) = (X — w)/(o/Vn) and satisfies both conditions above; it depends on the sample and
on ., and it has a standard normal distribution since o is known. Now one must find constants
C; and Cy; so that

PC,=g(X, X ..., X30)=Cyl=1—a (8-11)

Because of property 2, C; and C;; do not depend on 6. In our example, C; = —z,, and
Cy = zyp. Finally, you must manipulate the inequalities in the probability statement so that

PILX, Xy ..., X)) = 0= UX,, Xo,... . X,)] =1 — « (8-12)

This gives L(X,, X5, ..., X,) and U(X}, X, ..., X,) as the lower and upper confidence limits
defining the 100(1 — a)% confidence interval for 6. The quantity g(X,, X,, ..., X,; 0) is
often called a “pivotal quantity” because we pivot on this quantity in Equation §-11 to pro-
duce Equation 8-12. In our example, we manipulated the pivotal quantity (X — w)/(c/Vn)

to obtain L(X}, X,, ..., X,) = X — z,po/Vnand UX}, Xy, ..., X,) = X + 2,00/ V.
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8-2.5 A Large-Sample Confidence Interval for

Definition

EXAMPLE 8-3

We have assumed that the population distribution is normal with unknown mean and known
standard deviation o. We now present a large-sample CI and . that does not require these as-
sumptions. Let X}, X,, ..., X, be a random sample from a population with unknown mean
w and variance o, Now if the sample size 7 is large, the central limit theorem implies that X
has approximately a normal distribution with mean p and variance o?/n. Therefore
Z = (X — w)/(o/V/n) has approximately a standard normal distribution. This ratio could be
used as a pivotal quantity and manipulated as in Section 8-2.1 to produce an approximate CI
for . However, the standard deviation o is unknown. It turns out that when 7 is large, replac-
ing o by the sample standard deviation S has little effect on the distribution of Z. This leads to
the following useful result.

When 7 is large, the quantity

X—n
S/Nn

has an approximate standard normal distribution. Consequently,

S N

%_Za/zwi M‘SE—}_ZOL/ZW (8'13)

is a large sample confidence interval for ., with confidence level of approximately
100(1 — o)%.

Equation 8-13 holds regardless of the shape of the population distribution. Generally » should
be at least 40 to use this result reliably. The central limit theorem generally holds for » = 30,
but the larger sample size is recommended here because replacing o by S in Z results in addi-
tional variability.

An article in the 1993 volume of the Transactions of the American Fisheries Society reports
the results of a study to investigate the mercury contamination in largemouth bass. A sample
of fish was selected from 53 Florida lakes and mercury concentration in the muscle tissue was
measured (ppm). The mercury concentration values are

1.230 0.490 0.490 1.080 0.590 0.280 0.180 0.100 0.940
1.330 0.190 1.160 0.980 0.340 0.340 0.190 0.210 0.400
0.040 0.830 0.050 0.630 0.340 0.750 0.040 0.860 0.430
0.044 0.810 0.150 0.560 0.840 0.870 0.490 0.520 0.250
1.200 0.710 0.190 0.410 0.500 0.560 1.100 0.650 0.270
0.270 0.500 0.770 0.730 0.340 0.170 0.160 0.270
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The summary statistics from Minitab are displayed below:

Descriptive Statistics: Concentration

Variable N Mean Median TrMean StDev SE Mean
Concentration 53 0.5250 0.4900 0.5094 0.3486 0.0479
Variable Minimum Maximum Ql Q3

Concentration 0.0400 1.3300 0.2300  0.7900

Figure 8-3(a) and (b) presents the histogram and normal probability plot of the mercury
concentration data. Both plots indicate that the distribution of mercury concentration is not nor-
mal and is positively skewed. We want to find an approximate 95% CI on . Because n > 40,
the assumption of normality is not necessary to use Equation 8-13. The required quantities are
n=53,x = 0.5250, s = 0.3486, and z; (o5 = 1.96.The approximate 95% CI on . is

s _ s
X — ZoozswS w=X+ 205 n
0.3486 0.3486

0.5250 — 1.96

= =0.5250 + 1.96
N V53

04311 = w = 0.6189

This interval is fairly wide because there is a lot of variability in the mercury concentration
measurements.

A General Large Sample Confidence Interval

The large-sample confidence interval for p in Equation 8-13 is a special case of a more
general result. Suppose that 0 is a parameter of a probability distribution and let O be an
estimator of 0. If O (1) has an approximate normal distribution, (2) is approximately unbiased

Percentage
(&)
o

Frequency

O = N W d» OO0 N 00 O

0.0 0.5 1.0

0.0 0.5 1.0 1.5
Concentration Concentration
(@) (b)

Figure 8-3 Mercury concentration in largemouth bass (a) Histogram. (b) Normal probability plot.
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for 6, and (3) has standard deviation o that can be estimated from the sample data, then the

quantity (@ — 68)/0¢ has an approximate standard normal distribution. Then a large-sample

approximate CI for 0 is given by

6_ Z(x/20-® =0= 6 aF Zcx/ZO-(:)

(8-14)

Maximum likelihood estimators usually satisfy the three conditions listed above, so Equation
8-14 is often used when O is the maximum likelihood estimator of . Finally, note that
Equation 8-14 can be used even when o is a function of other unknown parameters (or of 0).
Essentially, all one does is to use the sample data to compute estimates of the unknown
parameters and substitute those estimates into the expression for og.

8-2.6 Bootstrap Confidence Intervals (CD Only)

EXERCISES FOR SECTION 8-2

8-1. For a normal population with known variance o,

answer the following questions:

(a) What is the confidence level for the interval x — 2.140/Vn
=W =X+ 2140/Vn?

(b) What is the confidence level for the interval X — 2.4905/Vn
==X+ 2490/Vn?

(c) What is the confidence level for the interval x — 1.85¢/Vn
=u =X+ 1.850/Vn?

8-2. For anormal population with known variance o

(a) What value of z,, in Equation 8-7 gives 98% confidence?

(b) What value of z, , in Equation 8-7 gives 80% confidence?

(c) What value of z,, in Equation 8-7 gives 75% confidence?

8-3. Consider the one-sided confidence interval expres-
sions, Equations 8-9 and 8-10.

(a) What value of z, would result in a 90% CI?

(b) What value of z, would result in a 95% CI?

(c) What value of z, would result in a 99% CI?

8-4. A confidence interval estimate is desired for the gain in
a circuit on a semiconductor device. Assume that gain is nor-
mally distributed with standard deviation o = 20.

(a) Find a 95% CI for w when » = 10 and x = 1000.

(b) Find a 95% CI for . when n = 25 and x = 1000.

(¢) Find a 99% CI for w when n = 10 and x = 1000.

(d) Find a 99% CI for p. when n = 25 and x = 1000.

8-5. Consider the gain estimation problem in Exercise 8-4.
How large must 7 be if the length of the 95% Cl is to be 40?

8-6. Following are two confidence interval estimates of the
mean . of the cycles to failure of an automotive door latch
mechanism (the test was conducted at an elevated stress level
to accelerate the failure).

31249 = p = 32157 31105 = p = 3230.1

(a) What is the value of the sample mean cycles to failure?

(b) The confidence level for one of these Cls is 95% and the
confidence level for the other is 99%. Both ClIs are calcu-
lated from the same sample data. Which is the 95% CI?
Explain why.

8-7. n = 100 random samples of water from a fresh water

lake were taken and the calcium concentration (milligrams

per liter) measured. A 95% CI on the mean calcium concen-

tration is 0.49 = p = 0.82.

(a) Would a 99% CI calculated from the same sample data
been longer or shorter?

(b) Consider the following statement: There is a 95% chance
that w is between 0.49 and 0.82. Is this statement correct?
Explain your answer.

(c) Consider the following statement: If » = 100 random
samples of water from the lake were taken and the 95% CI
on p computed, and this process was repeated 1000 times,
950 of the CIs will contain the true value of . Is this state-
ment correct? Explain your answer.

8-8. The breaking strength of yarn used in manufacturing

drapery material is required to be at least 100 psi. Past experi-

ence has indicated that breaking strength is normally distrib-
uted and that ¢ = 2 psi. A random sample of nine specimens

is tested, and the average breaking strength is found to be 98

psi. Find a 95% two-sided confidence interval on the true

mean breaking strength.

8-9. The yield of a chemical process is being studied. From

previous experience yield is known to be normally distributed

and o = 3. The past five days of plant operation have resulted
in the following percent yields: 91.6, 88.75, 90.8, 89.95, and

91.3. Find a 95% two-sided confidence interval on the true

mean yield.
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8-10. The diameter of holes for cable harness is known to

have a normal distribution with ¢ = 0.01 inch. A random

sample of size 10 yields an average diameter of 1.5045 inch.

Find a 99% two-sided confidence interval on the mean hole

diameter.

8-11. A manufacturer produces piston rings for an auto-

mobile engine. It is known that ring diameter is normally dis-

tributed with o = 0.001 millimeters. A random sample of 15

rings has a mean diameter of x = 74.036 millimeters.

(a) Construct a 99% two-sided confidence interval on the
mean piston ring diameter.

(b) Construct a 95% lower-confidence bound on the mean
piston ring diameter.

8-12. The life in hours of a 75-watt light bulb is known to be

normally distributed with o = 25 hours. A random sample of

20 bulbs has a mean life of x = 1014 hours.

(a) Construct a 95% two-sided confidence interval on the
mean life.

(b) Construct a 95% lower-confidence bound on the mean
life.

8-13. A civil engineer is analyzing the compressive strength

(a) Construct a 95% two-sided confidence interval on mean
compressive strength.

(b) Construct a 99% two-sided confidence interval on mean
compressive strength. Compare the width of this confi-
dence interval with the width of the one found in part (a).

8-14. Suppose that in Exercise 8-12 we wanted to be 95%

confident that the error in estimating the mean life is less than

five hours. What sample size should be used?

8-15. Suppose that in Exercise 8-12 we wanted the total
width of the two-sided confidence interval on mean life to be
six hours at 95% confidence. What sample size should be
used?

8-16. Suppose that in Exercise 8-13 it is desired to estimate
the compressive strength with an error that is less than 15 psi
at 99% confidence. What sample size is required?

8-17. By how much must the sample size n be increased if
the length of the CI on . in Equation 8-7 is to be halved?

8-18. If the sample size n is doubled, by how much is the
length of the CI on . in Equation 8-7 reduced? What happens
to the length of the interval if the sample size is increased by a
factor of four?

of concrete. Compressive strength is normally distributed with
a? = 1000(psi)>. A random sample of 12 specimens has a
mean compressive strength of x = 3250 psi.

8-3 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE UNKNOWN

When we are constructing confidence intervals on the mean p of a normal population when
o is known, we can use the procedure in Section 8-2.1. This CI is also approximately valid
(because of the central limit theorem) regardless of whether or not the underlying population
is normal, so long as n is reasonably large (n = 40, say). As noted in Section 8-2.5, we can
even handle the case of unknown variance for the large-sample-size situation. However, when
the sample is small and o is unknown, we must make an assumption about the form of the un-
derlying distribution to obtain a valid CI procedure. A reasonable assumption in many cases is
that the underlying distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-
tion, so this assumption will lead to confidence interval procedures of wide applicability. In
fact, moderate departure from normality will have little effect on validity. When the assump-
tion is unreasonable, an alternate is to use the nonparametric procedures in Chapter 15 that are
valid for any underlying distribution.

Suppose that the population of interest has a normal distribution with unknown mean
and unknown variance 0. Assume that a random sample of size n, say X, X, ..., X,, is avail-
able, and let X and S” be the sample mean and variance, respectively.

We wish to construct a two-sided CI on . If the variance ¢ is known, we know that
Z = (X — w)/(o/Vn) has a standard normal distribution. When o is unknown, a logical pro-
cedure is to replace o with the sample standard deviation S. The random variable Z now be-
comes T = (X — w)/(S/Vn). A logical question is what effect does replacing o by S have on the
distribution of the random variable 7'? If n is large, the answer to this question is “very little,”
and we can proceed to use the confidence interval based on the normal distribution from
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Section 8-2.5. However, 7 is usually small in most engineering problems, and in this situation
a different distribution must be employed to construct the CI.

8-3.1 The t Distribution

Definition

Let X, X5, ..., X, be a random sample from a normal distribution with unknown
mean p and unknown variance . The random variable

X 8-15
has a ¢ distribution with n — 1 degrees of freedom.
The ¢ probability density function is
I'(k+ 1)/2 1
LC 2] —0 < x <™ (8-16)

(x \/q;d“(k/2) [(xZ/k) + 1](k+ 1)/2
where £ is the number of degrees of freedom. The mean and variance of the ¢ distribution are
zero and k/(k — 2) (for k > 2), respectively.

Several ¢ distributions are shown in Fig. 8-4. The general appearance of the ¢ distribution is
similar to the standard normal distribution in that both distributions are symmetric and
unimodal, and the maximum ordinate value is reached when the mean . = 0. However, the ¢
distribution has heavier tails than the normal; that is, it has more probability in the tails than the
normal distribution. As the number of degrees of freedom k& — o, the limiting form of the # dis-
tribution is the standard normal distribution. Generally, the number of degrees of freedom for ¢
are the number of degrees of freedom associated with the estimated standard deviation.

Appendix Table IV provides percentage points of the ¢ distribution. We will let ¢, ; be the
value of the random variable 7 with k degrees of freedom above which we find an area
(or probability) . Thus, #, , is an upper-tail 100a percentage point of the ¢ distribution with k
degrees of freedom. This percentage point is shown in Fig. 8-5. In the Appendix Table IV the
a values are the column headings, and the degrees of freedom are listed in the left column. To

k=10

k=2 [N(O, 1)]

0 x t1-aqk =—ta,k O Lok t

Figure 8-4 Probability density functions of several ¢ Figure 8-5 Percentage points of the ¢
distributions. distribution.
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illustrate the use of the table, note that the 7~value with 10 degrees of freedom having an area
of 0.05 to the right is 75 ;o = 1.812. That is,

P(TlO > 10'05’10) = P(TIO > 1812) = 005

Since the ¢ distribution is symmetric about zero, we have #,_, = —t,; that is, the #-value hav-
ing an area of 1 — « to the right (and therefore an area of « to the left) is equal to the nega-
tive of the #-value that has area « in the right tail of the distribution. Therefore, 7,959 =
—to0s.10 = —1.812. Finally, because ¢, is the standard normal distribution, the familiar z, val-
ues appear in the last row of Appendix Table I'V.

8-3.2 Development of the t Distribution (CD Only)

8-3.3 The t Confidence Interval on

Definition

It is easy to find a 100(1 — «) percent confidence interval on the mean of a normal distribu-
tion with unknown variance by proceeding essentially as we did in Section 8-2.1. We know
that the distribution of 7 = (X — w)/(S/Vn) is t with n — 1 degrees of freedom. Letting
to2.n—1 be the upper 100a/2 percentage point of the ¢ distribution with n — 1 degrees of
freedom, we may write:

P(=teypn1 =T =typp1)=1—«

or

X—n
P\ ~typp1 = SN Sty ) =1 -«

Rearranging this last equation yields
P(y_ t(x/Z,n*lS/\/; = (L = )?'f’ tu/Z,n*IS/\/ﬁ) =1—-« (8-17)

This leads to the following definition of the 100(1 — «) percent two-sided confidence inter-
val on .

If X and s are the mean and standard deviation of a random sample from a normal
distribution with unknown variance o%, a 100(1 — «) percent confidence interval
on p is given by

3= ton/2,n—ls/\/’; = W =Xx + tcx/Z,n—lS/W (8-18)

where 7,5, is the upper 100a/2 percentage point of the ¢ distribution with n — 1
degrees of freedom.

One-sided confidence bounds on the mean of a normal distribution are also of interest
and are easy to find. Simply use only the appropriate lower or upper confidence limit from
Equation 8-18 and replace #,/5,,—1 by #y 1.
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EXAMPLE 8-4

Normal probability plot

20.5 90
. 80
18.0 S 70
o 8 60
3 T 50
;<_g 15.5 a 40
o 30
20
o 13.0

§ 10
10.5 5
1

8.0 5 10 15 20 25

Load at failure
Figure 8-7 Normal probability
plot of the load at failure data from
Example 8-4.

Figure 8-6 Box and whisker plot for the
load at failure data in Example 8-4.

An article in the journal Materials Engineering (1989, Vol. 11, No. 4, pp. 275-281) describes
the results of tensile adhesion tests on 22 U-700 alloy specimens. The load at specimen failure
is as follows (in megapascals):

19.8 10.1 14.9 7.5 15.4 15.4
15.4 18.5 7.9 12.7 11.9 11.4
114 14.1 17.6 16.7 15.8
19.5 8.8 13.6 11.9 11.4

The sample mean is x = 13.71, and the sample standard deviation is s = 3.55. Figures 8-6
and 8-7 show a box plot and a normal probability plot of the tensile adhesion test data, re-
spectively. These displays provide good support for the assumption that the population is nor-
mally distributed. We want to find a 95% Cl on w. Since n = 22, we have n — 1 = 21 degrees
of freedom for ¢, 50 5 055,1 = 2.080. The resulting CI is

X = typn1S/ NN = W =X+ typ,18/Vn
13.71 — 2.080(3.55)/V22 = . = 13.71 + 2.080(3.55)/V22
1371 — 1.57 = p = 13.71 + 1.57
12.14 = w = 15.28

The Cl is fairly wide because there is a lot of variability in the tensile adhesion test measurements.

It is not as easy to select a sample size # to obtain a specified length (or precision of estima-
tion) for this CI as it was in the known-o case because the length of the interval involves s (which
is unknown before the data are collected), n, and ¢, , | . Note that the #-percentile depends on the
sample size n. Consequently, an appropriate z can only be obtained through trial and error. The re-
sults of this will, of course, also depend on the reliability of our prior “guess” for o.

EXERCISES FOR SECTION 8-3

8-19. Find the values of the following percentiles: 7, s 5,

10.05,10 £0.10,205 £0.005,25> and 10.001,30-

8-20. Determine the #-percentile that is required to construct
each of the following two-sided confidence intervals:

(a) Confidence level = 95%, degrees of freedom = 12

(b) Confidence level = 95%, degrees of freedom = 24

(c) Confidence level = 99%, degrees of freedom = 13

(d) Confidence level = 99.9%, degrees of freedom = 15

8-21. Determine the #-percentile that is required to construct
each of the following one-sided confidence intervals:

(a) Confidence level = 95%, degrees of freedom = 14

(b) Confidence level = 99%, degrees of freedom = 19

(c) Confidence level = 99.9%, degrees of freedom = 24
8-22. A research engineer for a tire manufacturer is investi-
gating tire life for a new rubber compound and has built 16 tires
and tested them to end-of-life in a road test. The sample mean
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and standard deviation are 60,139.7 and 3645.94 kilometers.
Find a 95% confidence interval on mean tire life.

8-23. An Izod impact test was performed on 20 specimens of
PVC pipe. The sample mean is x = 1.25 and the sample stan-
dard deviation is s = 0.25. Find a 99% lower confidence
bound on Izod impact strength.

8-24. The brightness of a television picture tube can be eval-
uated by measuring the amount of current required to achieve a
particular brightness level. A sample of 10 tubes results in
X =317.2 and s = 15.7. Find (in microamps) a 99% confi-
dence interval on mean current required. State any necessary
assumptions about the underlying distribution of the data.

8-25. A particular brand of diet margarine was analyzed to

determine the level of polyunsaturated fatty acid (in percent-

ages). A sample of six packages resulted in the following data:

16.8,17.2,17.4,16.9, 16.5, 17.1.

(a) Is there evidence to support the assumption that the level
of polyunsaturated fatty acid is normally distributed?

(b) Find a 99% confidence interval on the mean . Provide a
practical interpretation of this interval.

8-26. The compressive strength of concrete is being tested

by a civil engineer. He tests 12 specimens and obtains the

following data.

2216 2237 2249 2204
2225 2301 2281 2263
2318 2255 2275 2295

(a) Is there evidence to support the assumption that compres-
sive strength is normally distributed? Does this data set
support your point of view? Include a graphical display in
your answer.

(b) Construct a 95% two-sided confidence interval on the
mean strength.

(c) Construct a 95% lower-confidence bound on the mean
strength.

8-27. A machine produces metal rods used in an automobile

suspension system. A random sample of 15 rods is selected,

and the diameter is measured. The resulting data (in millime-
ters) are as follows:

8.24 8.25 8.20 8.23 8.24
8.21 8.26 8.26 8.20 8.25
8.23 8.23 8.19 8.28 8.24

(a) Check the assumption of normality for rod diameter.
(b) Find a 95% two-sided confidence interval on mean rod
diameter.

8-28. Rework Exercise 8-27 to compute a 95% lower con-
fidence bound on rod diameter. Compare this bound with the
lower limit of the two-sided confidence limit from Exercise
8-27. Discuss why they are different.

8-29. The wall thickness of 25 glass 2-liter bottles was meas-
ured by a quality-control engineer. The sample mean was
X = 4.05 millimeters, and the sample standard deviation was
s = 0.08 millimeter. Find a 95% lower confidence bound for
mean wall thickness. Interpret the interval you have obtained.

8-30. An article in Nuclear Engineering International
(February 1988, p. 33) describes several characteristics of fuel
rods used in a reactor owned by an electric utility in Norway.
Measurements on the percentage of enrichment of 12 rods
were reported as follows:

2.94 3.00 2.90 2.75 3.00 2.95
2.90 2.75 2.95 2.82 2.81 3.05

(a) Use a normal probability plot to check the normality as-
sumption.

(b) Find a 99% two-sided confidence interval on the mean
percentage of enrichment. Are you comfortable with the
statement that the mean percentage of enrichment is 2.95
percent? Why?

8-31. A postmix beverage machine is adjusted to release a

certain amount of syrup into a chamber where it is mixed with

carbonated water. A random sample of 25 beverages was
found to have a mean syrup content of x = 1.10 fluid ounces

and a standard deviation of s = 0.015 fluid ounces. Find a

95% CI on the mean volume of syrup dispensed.

8-32. An article in the Journal of Composite Materials
(December 1989, Vol 23, p. 1200) describes the effect of delam-
ination on the natural frequency of beams made from composite
laminates. Five such delaminated beams were subjected to loads,
and the resulting frequencies were as follows (in hertz):

230.66, 233.05, 232.58, 229.48, 232.58

Find a 90% two-sided confidence interval on mean natural
frequency. Is there evidence to support the assumption of nor-
mality in the population?

8-4 CONFIDENCE INTERVAL ON THE VARIANCE AND
STANDARD DEVIATION OF A NORMAL POPULATION

Sometimes confidence intervals on the population variance or standard deviation are needed.
When the population is modeled by a normal distribution, the tests and intervals described in
this section are applicable. The following result provides the basis of constructing these con-

fidence intervals.
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Definition

Figure 8-8 Proba-
bility density functions
of several ¥ distribu-
tions.

Let X}, X,, ..., X, be a random sample from a normal distribution with mean . and
2

variance o2, and let S be the sample variance. Then the random variable
n—1)8*
X = % (8-19)
(02

has a chi-square (x?) distribution with n — 1 degrees of freedom.

The probability density function of a x* random variable is

1 1 x
1) = ) L2172 S (8-20)

where k is the number of degrees of freedom. The mean and variance of the x* distribution are
k and 2k, respectively. Several chi-square distributions are shown in Fig. 8-8. Note that the
chi-square random variable is nonnegative and that the probability distribution is skewed to
the right. However, as k increases, the distribution becomes more symmetric. As k — %, the
limiting form of the chi-square distribution is the normal distribution.

The percentage points of the x> distribution are given in Table III of the Appendix.
Define ng,k as the percentage point or value of the chi-square random variable with & degrees
of freedom such that the probability that X2 exceeds this value is . That is,

0

POC >3 = | i = o
Xi‘k
This probability is shown as the shaded area in Fig. 8-9(a). To illustrate the use of Table III,
note that the areas « are the column headings and the degrees of freedom k are given in the left

column. Therefore, the value with 10 degrees of freedom having an area (probability) of 0.05
to the right is X%.OS,IO = 18.31.This value is often called an upper 5% point of chi-square with

f(x)
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fx) f(x)

o 0.05 0.05

0 X2k x 0 X§os 10 X3.05, 10
=3.94 =18.31
(a) (b)
Figure 8-9  Percentage point of the x* distribution. (a) The percentage point x2 . (b) The upper
percentage point x(z)_os, 10 = 18.31 and the lower percentage point X%'()S’lo = 3.94.

10 degrees of freedom. We may write this as a probability statement as follows:

Conversely, a lower 5% point of chi-square with 10 degrees of freedom would be X510 = 3.94
(from Appendix Table I1I). Both of these percentage points are shown in Figure 8-9(b).
The construction of the 100(1 — )% CI for o is straightforward. Because

(n — 1)s?

0_2

X2 —

is chi-square with » — 1 degrees of freedom, we may write
P(Xi—aan-1 =X =Xopon-1) = 1 —
so that
(n — 1)s?
P(X%aﬁ,nl = o2 = Xi/2,n*1 =l-a

This last equation can be rearranged as

(n—l)S2< 2<(n—1)s2 L
(0, )-1-

2 = =2
Xo/2,n—1 X1—a/2,n—1

This leads to the following definition of the confidence interval for o,

Definition
If 5? is the sample variance from a random sample of n observations from a normal dis-
tribution with unknown variance o, then a 100(1 — )% confidence interval on o is

(n — 1)s? = (n— 1)s?

2 =5 (8-21)
Xo/2,n—1 X1—a/2,n—1
where x> /21 and X} a /2.q-1 are the upper and lower 100c/2 percentage points of
the chi-square distribution with » — 1 degrees of freedom, respectively. A confidence
interval for o has lower and upper limits that are the square roots of the correspon-
ding limits in Equation 8-21.
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It is also possible to find a 100(1 — «)% lower confidence bound or upper confidence bound

on o,

(n — 1)s?

2
Xa,n =Il

respectively.

The 100(1 — )% lower and upper confidence bounds on ¢ are

=0

(n — 1)s?

2
Xl—cx,n—l

2

and o’ = (8-22)

EXAMPLE 8-5

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of

20 bottles results in a sample variance of fill volume of s* = 0.0153 (fluid ounces)”. If the
variance of fill volume is too large, an unacceptable proportion of bottles will be under- or
overfilled. We will assume that the fill volume is approximately normally distributed. A 95%
upper-confidence interval is found from Equation 8-22 as follows:

or

2

(19)0.0153
S e —
10.117

(n— 1)s*

2
X0.95,19

ol =

= 0.0287 (fluid ounce)?

This last expression may be converted into a confidence interval on the standard deviation o
by taking the square root of both sides, resulting in

oc=0.17

Therefore, at the 95% level of confidence, the data indicate that the process standard deviation

could be as large as 0.17 fluid ounce.

EXERCISES FOR SECTION 8-4

8-33.

X%.05,109 X%).025,15’ X(2).01,1zs X%).es,zm X%).99,189 X%).995,1ss and X%.oos,zs-

8-34. Determine the x> percentile that is required to

construct each of the following Cls:

(a) Confidence level = 95%, degrees of freedom = 24,
one-sided (upper)

(b) Confidence level = 99%, degrees of freedom = 9, one-
sided (lower)

(c) Confidence level = 90%, degrees of freedom = 19, two-
sided.

8-35. A rivet is to be inserted into a hole. A random sample
of n = 15 parts is selected, and the hole diameter is measured.

Determine the values of the following percentiles:

The sample standard deviation of the hole diameter measure-
ments is s = 0.008 millimeters. Construct a 99% lower confi-
dence bound for o>,

8-36. The sugar content of the syrup in canned peaches is
normally distributed. A random sample of n = 10 cans yields
a sample standard deviation of s = 4.8 milligrams. Find a
95% two-sided confidence interval for o.

8-37. Consider the tire life data in Exercise 8-22. Find a
95% lower confidence bound for 2.

8-38. Consider the Izod impact test data in Exercise 8-23.
Find a 99% two-sided confidence interval for o,
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8-39. The percentage of titanium in an alloy used in aero- 8-40. Consider the hole diameter data in Exercise 8-35.
space castings is measured in 51 randomly selected parts. The Construct a 99% two-sided confidence interval for o.

sample standard deviation is s = 0.37. Construct a 95% two- 8-41. Consider the sugar content data in Exercise 8-37. Find
sided confidence interval for o. a 90% lower confidence bound for o.

8-5 A LARGE-SAMPLE CONFIDENCE INTERVAL FOR A
POPULATION PROPORTION

It is often necessary to construct confidence intervals on a population proportion. For exam-
ple, suppose that a random sample of size » has been taken from a large (possibly infinite)
population and that X(= n) observations in this sample belong to a class of interest. Then
P=X/nisa point estimator of the proportion of the population p that belongs to this class.
Note that # and p are the parameters of a binomial distribution. Furthermore, from Chapter 4
we know that the sampling distribution of Pis approximately normal with mean p and vari-
ance p(1 — p)/n, if p is not too close to either 0 or 1 and if # is relatively large. Typically, to
apply this approximation we require that np and n(l — p) be greater than or equal to 5. We
will make use of the normal approximation in this section.

Definition
If n is large, the distribution of

7= X—np P - P
Vip(1 = p) \/p(l - p)

n

is approximately standard normal.

To construct the confidence interval on p, note that
Plmzgp=Z=zyp)=1-a

SO

This may be rearranged as

P<f’—za/z\/@51”§ﬁ+zaﬂ\/@)zl_“ (8-23)

The quantity Vp(l — p)/n in Equation 8-23 is called the standard error of the point esti-
mator P. Unfortunately, the upper and lower limits of the confidence interval obtained from
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Definition

EXAMPLE 8-6

Equation 8-23 contain the unknown parameter p. However, as suggested at the end of Section
8-2.5, a satisfactory solution is to replace p by P in the standard error, which results in

P(P—Za/zw/P(ln_P)Spsﬁ-l-za/zq/})(l’q_})))z1—OL (8-24)

This leads to the approximate 100(1 — )% confidence interval on p.

If p is the proportion of observations in a random sample of size n that belongs to a
class of interest, an approximate 100(1 — )% confidence interval on the proportion
p of the population that belongs to this class is

A 5(1— ) ) (1= p)
P—Za\| — =P =P+ | (8-25)

where z,, is the upper «/2 percentage point of the standard normal distribution.

This procedure depends on the adequacy of the normal approximation to the binomial. To
be reasonably conservative, this requires that np and n(1 — p) be greater than or equal to 5. In
situations where this approximation is inappropriate, particularly in cases where # is small,
other methods must be used. Tables of the binomial distribution could be used to obtain a con-
fidence interval for p. However, we could also use numerical methods based on the binomial
probability mass function that are implemented in computer programs.

In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that
is rougher than the specifications allow. Therefore, a point estimate of the proportion of bear-
ings in the population that exceeds the roughness specification is p = x/n = 10/85 = 0.12.
A 95% two-sided confidence interval for p is computed from Equation 8-25 as

R [p(1 = p) R [p(1 — p)
D~ 20005\ 5 =P=D 7t 2005\ 5

or
0.2 - 196/ 2208 _ 010 4 196, /22088
83 s
which simplifies to
0.05=p=0.19

Choice of Sample Size
Since P is the point estimator of p, we can define the error in estimating p by P as
E=|p— f’|. Note that we are approximately 100(1 — a)% confident that this error is less
than z,,Vp(1 — p)/n. For instance, in Example 8-6, we are 95% confident that the sample
proportion p = (.12 differs from the true proportion p by an amount not exceeding 0.07.

In situations where the sample size can be selected, we may choose 7 to be 100 (1 — «)%
confident that the error is less than some specified value E. If we set £ = z,,Vp(l — p)/n
and solve for n, the appropriate sample size is
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n=(22) 50 - » (8-26)

An estimate of p is required to use Equation 8-26. If an estimate p from a previous sam-
ple is available, it can be substituted for p in Equation 8-26, or perhaps a subjective estimate
can be made. If these alternatives are unsatisfactory, a preliminary sample can be taken, p
computed, and then Equation 8-26 used to determine how many additional observations are
required to estimate p with the desired accuracy. Another approach to choosing 7 uses the fact
that the sample size from Equation 8-26 will always be a maximum for p = 0.5 [that is,
p(1 — p) = 0.25 with equality for p = 0.5], and this can be used to obtain an upper bound on
n. In other words, we are at least 100(1 — «)% confident that the error in estimating p by p
is less than E if the sample size is

Za/2

n= <E>2 (0.25) (8-27)

Consider the situation in Example 8-6. How large a sample is required if we want to be 95%
confident that the error in using p to estimate p is less than 0.05? Using p = 0.12 as an initial
estimate of p, we find from Equation 8-26 that the required sample size is

2 2
_(Zo02s\ ., . _ (1.96 _
n —< 2 ) p(1 - p) = <o.os> 0.12(0.88) = 163

If we wanted to be at least 95% confident that our estimate p of the true proportion p was
within 0.05 regardless of the value of p, we would use Equation 8-27 to find the sample size

2 2
. Z0.025 . 1.96 —_
n —( - ) (0.25) = (0.05> (0.25) = 385

Notice that if we have information concerning the value of p, either from a preliminary sam-
ple or from past experience, we could use a smaller sample while maintaining both the desired
precision of estimation and the level of confidence.

One-Sided Confidence Bounds
We may find approximate one-sided confidence bounds on p by a simple modification of
Equation 8-25.

The approximate 100(1 — )% lower and upper confidence bounds are

S s
G=r MSP T e w (8-28)

respectively.




268 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

EXERCISES FOR SECTION 8-5

8-42. Of 1000 randomly selected cases of lung cancer, 823
resulted in death within 10 years. Construct a 95% two-sided
confidence interval on the death rate from lung cancer.

8-43. How large a sample would be required in Exercise
8-42 to be at least 95% confident that the error in estimating
the 10-year death rate from lung cancer is less than 0.03?

8-44. A random sample of 50 suspension helmets used by
motorcycle riders and automobile race-car drivers was sub-
jected to an impact test, and on 18 of these helmets some dam-
age was observed.

(a) Find a 95% two-sided confidence interval on the true pro-
portion of helmets of this type that would show damage
from this test.

(b) Using the point estimate of p obtained from the prelimi-
nary sample of 50 helmets, how many helmets must be
tested to be 95% confident that the error in estimating the
true value of p is less than 0.02?

(c) How large must the sample be if we wish to be at least
95% confident that the error in estimating p is less than
0.02, regardless of the true value of p?

8-45. The Arizona Department of Transportation wishes to
survey state residents to determine what proportion of the
population would like to increase statewide highway speed
limits to 75 mph from 65 mph. How many residents do they
need to survey if they want to be at least 99% confident that
the sample proportion is within 0.05 of the true proportion?
8-46. A manufacturer of electronic calculators is interested
in estimating the fraction of defective units produced. A ran-
dom sample of 800 calculators contains 10 defectives.
Compute a 99% upper-confidence bound on the fraction
defective.

8-47. A study is to be conducted of the percentage of home-
owners who own at least two television sets. How large a
sample is required if we wish to be 99% confident that the
error in estimating this quantity is less than 0.017?

8-48. The fraction of defective integrated circuits produced
in a photolithography process is being studied. A random sam-
ple of 300 circuits is tested, revealing 13 defectives. Find a
95% two-sided CI on the fraction of defective circuits pro-
duced by this particular tool.

8-6 A PREDICTION INTERVAL FOR A FUTURE OBSERVATION

In some problem situations, we may be interested in predicting a future observation of a
variable. This is a different problem than estimating the mean of that variable, so a confidence
interval is not appropriate. In this section we show how to obtain a 100(1 — a)% prediction
interval on a future value of a normal random variable.

Suppose that X, X, ..

., X, is a random sample from a normal population. We wish to

predict the value X, a single future observation. A point prediction of X, is X,
the sample mean. The prediction error is X,; — X. The expected value of the prediction

error is

EXp —X)=p—n=0

and the variance of the prediction error is

V(Xn+1

2
_ 1
_.X):()'2+(;=0'2(1+n>

because the future observation, X, is independent of the mean of the current sample X. The
prediction error X,,; — X is normally distributed. Therefore

_ Kpr1 — X

) 1
g +E
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has a standard normal distribution. Replacing o with S results in

Kpr1 — X

1
S\ 1+

which has a ¢ distribution with » — 1 degrees of freedom. Manipulating 7 as we have done previ-
ously in the development of a CI leads to a prediction interval on the future observation X, ;.

Definition

distribution is given by

A 100(1 — a)% prediction interval on a single future observation from a normal

_ 1 _ 1
X~ topn184|1 T 5 = X1 S Xt typp154f1 1+

(8-29)

The prediction interval for X, ; will always be longer than the confidence interval for
because there is more variability associated with the prediction error than with the error of es-
timation. This is easy to see because the prediction error is the difference between two random
variables (X,., — X), and the estimation error in the CI is the difference between one random
variable and a constant (X — ). As n gets larger (n — ), the length of the CI decreases to
zero, essentially becoming the single value w, but the length of the prediction interval
approaches 2z,,,0. So as n increases, the uncertainty in estimating p. goes to zero, although
there will always be uncertainty about the future value X, even when there is no need to
estimate any of the distribution parameters.

EXAMPLE 8-8

Reconsider the tensile adhesion tests on specimens of U-700 alloy described in Example 8-4.

The load at failure for n = 22 specimens was observed, and we found that x = 13.71 and
s = 3.55. The 95% confidence interval on p was 12.14 = . = 15.28. We plan to test
a twenty-third specimen. A 95% prediction interval on the load at failure for this specimen is

X = typ 1S

[ 1
13.71 = (20800355 1 + 5 = X3y = 13.71 + (2.080)3.55

1+

_ 1
= Xn+1 =x + t(x/Z,n*ls 1+ E

1
n

L
22

A

6.16 = Xy, = 21.26

Notice that the prediction interval is considerably longer than the CI.

EXERCISES FOR SECTION 8-6

8-49. Consider the tire-testing data described in Exercise 8-22.
Compute a 95% prediction interval on the life of the next tire of
this type tested under conditions that are similar to those em-
ployed in the original test. Compare the length of the prediction
interval with the length of the 95% CI on the population mean.

8-50.  Consider the Izod impact test described in Exercise §8-23.
Compute a 99% prediction interval on the impact strength of
the next specimen of PVC pipe tested. Compare the length of
the prediction interval with the length of the 99% CI on the
population mean.
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8-51. Consider the television tube brightness test described
in Exercise 8-24. Compute a 99% prediction interval on the
brightness of the next tube tested. Compare the length of the
prediction interval with the length of the 99% CI on the popu-
lation mean.

8-52. Consider the margarine test described in Exercise 8-25.
Compute a 99% prediction interval on the polyunsaturated
fatty acid in the next package of margarine that is tested.
Compare the length of the prediction interval with the length
of the 99% CI on the population mean.

8-53. Consider the test on the compressive strength of con-
crete described in Exercise 8-26. Compute a 90% prediction
interval on the next specimen of concrete tested.

8-54. Consider the suspension rod diameter measurements
described in Exercise 8-27. Compute a 95% prediction inter-
val on the diameter of the next rod tested. Compare the length
of the prediction interval with the length of the 95% CI on the
population mean.

8-55. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% prediction interval
on the wall thickness of the next bottle tested.

8-56. How would you obtain a one-sided prediction bound
on a future observation? Apply this procedure to obtain a 95%
one-sided prediction bound on the wall thickness of the next
bottle for the situation described in Exercise 8-29.

8-57. Consider the fuel rod enrichment data described
in Exercise 8-30. Compute a 99% prediction interval on the
enrichment of the next rod tested. Compare the length of the
prediction interval with the length of the 95% CI on the
population mean.

8-58. Consider the syrup dispensing measurements de-
scribed in Exercise 8-31. Compute a 95% prediction interval
on the syrup volume in the next beverage dispensed. Compare
the length of the prediction interval with the length of the 95%
CI on the population mean.

8-59. Consider the natural frequency of beams described
in Exercise 8-32. Compute a 90% prediction interval on the
diameter of the natural frequency of the next beam of this
type that will be tested. Compare the length of the prediction
interval with the length of the 95% CI on the population
mean.

8-7 TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION

Consider a population of semiconductor processors. Suppose that the speed of these processors
has a normal distribution with mean p. = 600 megahertz and standard deviation o = 30 mega-
hertz. Then the interval from 600 — 1.96(30) = 541.2 to 600 + 1.96(30) = 658.8 megahertz
captures the speed of 95% of the processors in this population because the interval from
—1.96 to 1.96 captures 95% of the area under the standard normal curve. The interval from
M =z, to i + 2,50 is called a tolerance interval.

If p and o are unknown, we can use the data from a random sample of size » to compute
X and s, and then form the interval (x — 1.96s,x + 1.96s). However, because of sampling
variability in x and s, it is likely that this interval will contain less than 95% of the values in
the population. The solution to this problem is to replace 1.96 by some value that will make
the proportion of the distribution contained in the interval 95% with some level of confidence.

Fortunately, it is easy to do this.

Definition

A tolerance interval for capturing at least y% of the values in a normal distribution
with confidence level 100(1 — «)% is

X — ks,

where £ is a tolerance interval factor found in Appendix Table XI. Values are given
for y = 90%, 95%, and 95% and for 95% and 99% confidence.

X + ks
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One-sided tolerance bounds can also be computed. The tolerance factors for these bounds are
also given in Appendix Table XI.

Let’s reconsider the tensile adhesion tests originally described in Example 8-4. The load
at failure for n = 22 specimens was observed, and we found that x = 31.71 and s = 3.55.
We want to find a tolerance interval for the load at failure that includes 90% of the
values in the population with 95% confidence. From Appendix Table XI the tolerance
factor k for n = 22, v = 0.90, and 95% confidence is k& = 2.264. The desired tolerance
interval is

(x — ks,x + ks) or [31.71 — (2.264)3.55,31.71 + (2.264)3.55]

which reduces to (23.67, 39.75). We can be 95% confident that at least 90% of the values of
load at failure for this particular alloy lie between 23.67 and 39.75 megapascals.

From Appendix Table XI, we note that as n — o, the value of k goes to the z-value associated
with the desired level of containment for the normal distribution. For example, if we want
90% of the population to fall in the two-sided tolerance interval, k approaches z, s = 1.645 as
n — . Note that as n — %, a 100(1 — a)% prediction interval on a future value approaches a

tolerance interval that contains 100(1 — «)% of the distribution.

EXERCISES FOR SECTION 8-7

8-60. Compute a 95% tolerance interval on the life of the
tires described in Exercise 8-22, that has confidence level
95%. Compare the length of the tolerance interval with the
length of the 95% CI on the population mean. Which interval
is shorter? Discuss the difference in interpretation of these
two intervals.

8-61. Consider the Izod impact test described in Exercise
8-23. Compute a 99% tolerance interval on the impact
strength of PVC pipe that has confidence level 90%.
Compare the length of the tolerance interval with the length
of the 99% CI on the population mean. Which interval is
shorter? Discuss the difference in interpretation of these two
intervals.

8-62. Compute a 99% tolerance interval on the brightness
of the television tubes in Exercise 8-24 that has confidence
level 95%. Compare the length of the prediction interval with
the length of the 99% CI on the population mean. Which
interval is shorter? Discuss the difference in interpretation of
these two intervals.

8-63. Consider the margarine test described in Exercise 8-25.
Compute a 99% tolerance interval on the polyunsaturated
fatty acid in this particular type of margarine that has confi-
dence level 95%. Compare the length of the prediction in-
terval with the length of the 99% CI on the population mean.
Which interval is shorter? Discuss the difference in inter-
pretation of these two intervals.

8-64. Compute a 90% tolerance interval on the compres-
sive strength of the concrete described in Exercise 8-26 that
has 90% confidence.

8-65. Compute a 95% tolerance interval on the diameter of
the rods described in Exercise 8-27 that has 90% confidence.
Compare the length of the prediction interval with the length
of the 95% CI on the population mean. Which interval is
shorter? Discuss the difference in interpretation of these two
intervals.

8-66. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% tolerance interval
on bottle wall thickness that has confidence level 90%.

8-67. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% lower tolerance
bound on bottle wall thickness that has confidence level
90%. Why would a lower tolerance bound likely be of
interest here?

8-68. Consider the fuel rod enrichment data described in
Exercise 8-30. Compute a 99% tolerance interval on rod
enrichment that has confidence level 95%. Compare the
length of the prediction interval with the length of the 95%
CI on the population mean.

8-69. Compute a 95% tolerance interval on the syrup vol-
ume described in Exercise 8-31 that has confidence level 90%.
Compare the length of the prediction interval with the length
of the 95% CI on the population mean.
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Supplemental Exercises

8-70. Consider the confidence interval for w with known
standard deviation o

X =20/ =pw=%+2,0/Vn

where o; + o, = a. Let @ = 0.05 and find the interval for

a; = a, = a/2 = 0.025. Now find the interval for the case

a; = 0.01 and o, = 0.04. Which interval is shorter? Is there

any advantage to a “symmetric” confidence interval?

8-71. A normal population has a known mean 50 and

unknown variance.

(a) A random sample of n = 16 is selected from this popula-
tion, and the sample results are x = 52 and s = 8. How
unusual are these results? That is, what is the probability
of observing a sample average as large as 52 (or larger) if
the known, underlying mean is actually 50?

(b) A random sample of n = 30 is selected from this popula-
tion, and the sample results are x = 52 and s = 8. How
unusual are these results?

(c) A random sample of n = 100 is selected from this popula-
tion, and the sample results are x = 52 and s = 8. How
unusual are these results?

(d) Compare your answers to parts (a)—(c) and explain why
they are the same or differ.

8-72. A normal population has known mean p = 50 and

variance o> = 5. What is the approximate probability that the

sample variance is greater than or equal to 7.44? less than or

equal to 2.56?

(a) For a random sample of n = 16.

(b) For a random sample of n = 30.

(c) For a random sample of n = 71.

(d) Compare your answers to parts (a)—(c) for the approxi-
mate probability that the sample variance is greater than
or equal to 7.44. Explain why this tail probability is
increasing or decreasing with increased sample size.

(e) Compare your answers to parts (a)—(c) for the approxi-
mate probability that the sample variance is less than or
equal to 2.56. Explain why this tail probability is increas-
ing or decreasing with increased sample size.

8-73. Anarticle in the Journal of Sports Science (1987, Vol.

S, pp- 261-271) presents the results of an investigation of the

hemoglobin level of Canadian Olympic ice hockey players.

The data reported are as follows (in g/dl):

153 16.0 14.4 16.2 16.2
14.9 15.7 15.3 14.6 15.7

16.0 15.0 15.7 16.2 14.7
14.8 14.6 15.6 14.5 15.2
(a) Given the following probability plot of the data, what is a

logical assumption about the underlying distribution of
the data?
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Percentage

13.5 14.0 145 150 155 16.0 16.5 17.0
Hemoglobin Level

(b) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the mean.

(c) Based on this sample data, a 95% confidence interval for
the mean is (15.04, 15.62). Is it reasonable to infer that the
true mean could be 14.5? Explain your answer.

(d) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the variance.

(e) Based on this sample data, a 95% confidence interval
for the variance is (0.22, 0.82). Is it reasonable to infer
that the true variance could be 0.35? Explain your
answer.

(f) Is it reasonable to use these confidence intervals to draw
an inference about the mean and variance of hemoglobin
levels

(1) of Canadian doctors? Explain your answer.
(i1) of Canadian children ages 6—-12? Explain your answer.

8-74. The article “Mix Design for Optimal Strength
Development of Fly Ash Concrete” (Cement and Concrete
Research, 1989, Vol. 19, No. 4, pp. 634-640) investigates
the compressive strength of concrete when mixed with fly
ash (a mixture of silica, alumina, iron, magnesium oxide,
and other ingredients). The compressive strength for nine
samples in dry conditions on the twenty-eighth day are as
follows (in megapascals):

40.2 304 28.9 30.5 224
25.8 18.4 14.2 153

(a) Given the following probability plot of the data, what is a
logical assumption about the underlying distribution of
the data?
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Strength

30 40 50

Find a 99% lower one-sided confidence interval on mean
compressive strength. Provide a practical interpretation of
this interval.

Find a 98% two-sided confidence interval on mean com-
pressive strength. Provide a practical interpretation of this
interval and explain why the lower end-point of the inter-
val is or is not the same as in part (b).

Find a 99% upper one-sided confidence interval on the
variance of compressive strength. Provide a practical in-
terpretation of this interval.

Find a 98% two-sided confidence interval on the variance
of compression strength. Provide a practical interpretation
of this interval and explain why the upper end-point of the
interval is or is not the same as in part (d).

Suppose that it was discovered that the largest observation
40.2 was misrecorded and should actually be 20.4. Now
the sample mean X = 23 and the sample variance
s* = 36.9. Use these new values and repeat parts (c)
and (e). Compare the original computed intervals and the
newly computed intervals with the corrected observation
value. How does this mistake affect the values of the sam-
ple mean, sample variance, and the width of the two-sided
confidence intervals?

Suppose, instead, that it was discovered that the largest
observation 40.2 is correct, but that the observation 25.8 is
incorrect and should actually be 24.8. Now the sample
mean X = 25 and the sample variance s*> = 8.41. Use these
new values and repeat parts (c) and (e). Compare the origi-
nal computed intervals and the newly computed intervals
with the corrected observation value. How does this mis-
take affect the values of the sample mean, sample variance,
and the width of the two-sided confidence intervals?

Use the results from parts (f) and (g) to explain the effect
of mistakenly recorded values on sample estimates.
Comment on the effect when the mistaken values are near
the sample mean and when they are not.
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8-75. An operating system for a personal computer has been
studied extensively, and it is known that the standard deviation
of the response time following a particular command is ¢ = §
milliseconds. A new version of the operating system is
installed, and we wish to estimate the mean response time for
the new system to ensure that a 95% confidence interval for
has length at most 5 milliseconds.

(a) If we can assume that response time is normally distributed
and that o = 8 for the new system, what sample size would
you recommend?

(b) Suppose that we are told by the vendor that the standard
deviation of the response time of the new system is
smaller, say o = 6; give the sample size that you recom-
mend and comment on the effect the smaller standard
deviation has on this calculation.

8-76. Consider the hemoglobin data in Exercise 8-73. Find

the following:

(a) An interval that contains 95% of the hemoglobin values
with 90% confidence.

(b) An interval that contains 99% of the hemoglobin values
with 90% confidence.

8-77. Consider the compressive strength of concrete data
from Exercise 8-74. Find a 95% prediction interval on the
next sample that will be tested.

8-78. The maker of a shampoo knows that customers like

this product to have a lot of foam. Ten sample bottles of the

product are selected at random and the foam heights observed

are as follows (in millimeters): 210, 215, 194, 195, 211, 201,

198, 204, 208, and 196.

(a) Is there evidence to support the assumption that foam
height is normally distributed?

(b) Find a 95% CI on the mean foam height.

(c) Find a 95% prediction interval on the next bottle of sham-
poo that will be tested.

(d) Find an interval that contains 95% of the shampoo foam
heights with 99% confidence.

(e) Explain the difference in the intervals computed in parts
(b), (c), and (d).

8-79. During the 1999 and 2000 baseball seasons, there was

much speculation that the unusually large number of home

runs that were hit was due at least in part to a livelier ball. One

way to test the “liveliness” of a baseball is to launch the ball at

a vertical surface with a known velocity 7, and measure the

ratio of the outgoing velocity V,, of the ball to V;. The ratio

R = V,/V, is called the coefficient of restitution. Following

are measurements of the coefficient of restitution for 40

randomly selected baseballs. The balls were thrown from a

pitching machine at an oak surface.

0.6248  0.6237 0.6118 0.6159  0.6298  0.6192
0.6520  0.6368  0.6220 0.6151  0.6121  0.6548
0.6226  0.6280  0.6096  0.6300 0.6107  0.6392
0.6230  0.6131  0.6223  0.6297  0.6435  0.5978
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0.6351  0.6275 0.6261  0.6262 0.6262 0.6314
0.6128  0.6403  0.6521  0.6049  0.6170
0.6134  0.6310 0.6065 0.6214 0.6141

(a) Is there evidence to support the assumption that the coef-
ficient of restitution is normally distributed?

(b) Find a 99% CI on the mean coefficient of restitution.

(c) Find a 99% prediction interval on the coefficient of resti-
tution for the next baseball that will be tested.

(d) Find an interval that will contain 99% of the values of the
coefficient of restitution with 95% confidence.

(e) Explain the difference in the three intervals computed in
parts (b), (c), and (d).

8-80. Consider the baseball coefficient of restitution data in

Exercise 8-79. Suppose that any baseball that has a coefficient

of restitution that exceeds 0.635 is considered too lively.

Based on the available data, what proportion of the baseballs

in the sampled population are too lively? Find a 95% lower

confidence bound on this proportion.

8-81. An article in the ASCE Journal of Energy Engineering

(“Overview of Reservoir Release Improvements at 20 TVA

Dams,” Vol. 125, April 1999, pp. 1-17) presents data on

dissolved oxygen concentrations in streams below 20 dams in

the Tennessee Valley Authority system. The observations are (in

milligrams per liter): 5.0, 3.4,3.9,1.3,0.2,0.9,2.7,3.7,3.8, 4.1,

1.0,1.0,0.8,0.4,3.8,4.5,5.3,6.1, 6.9, and 6.5.

(a) Is there evidence to support the assumption that the
dissolved oxygen concentration is normally distributed?

(b) Find a 95% CI on the mean dissolved oxygen concentra-
tion.

(c) Find a 95% prediction interval on the dissolved oxygen
concentration for the next stream in the system that will be
tested.

(d) Find an interval that will contain 95% of the values of the
dissolved oxygen concentration with 99% confidence.

(e) Explain the difference in the three intervals computed in
parts (b), (c), and (d).

8-82. The tar content in 30 samples of cigar tobacco
follows:

1.542 1.585 1.532 1.466 1.499 1.611
1.622 1.466 1.546 1.494 1.548 1.626
1.440 1.608 1.520 1.478 1.542 1.511
1.459 1.533 1.532 1.523 1.397 1.487
1.598 1.498 1.600 1.504 1.545 1.558

(a) Is there evidence to support the assumption that the tar
content is normally distributed?
(b) Find a 99% CI on the mean tar content.

(c) Find a 99% prediction interval on the tar content for the
next observation that will be taken on this particular type
of tobacco.

(d) Find an interval that will contain 99% of the values of the
tar content with 95% confidence.

(e) Explain the difference in the three intervals computed in
parts (b), (c), and (d).

8-83. A manufacturer of electronic calculators takes a

random sample of 1200 calculators and finds that there are

eight defective units.

(a) Construct a 95% confidence interval on the population
proportion.

(b) Is there evidence to support a claim that the fraction of
defective units produced is 1% or less?

8-84. An article in The Engineer (“Redesign for Suspect

Wiring,” June 1990) reported the results of an investigation

into wiring errors on commercial transport aircraft that may

produce faulty information to the flight crew. Such a wiring
error may have been responsible for the crash of a British

Midland Airways aircraft in January 1989 by causing the pilot

to shut down the wrong engine. Of 1600 randomly selected

aircraft, eight were found to have wiring errors that could
display incorrect information to the flight crew.

(a) Find a 99% confidence interval on the proportion of air-
craft that have such wiring errors.

(b) Suppose we use the information in this example to
provide a preliminary estimate of p. How large a sample
would be required to produce an estimate of p that we are
99% confident differs from the true value by at most
0.008?

(c¢) Suppose we did not have a preliminary estimate of p. How
large a sample would be required if we wanted to be at
least 99% confident that the sample proportion differs
from the true proportion by at most 0.008 regardless of the
true value of p?

(d) Comment on the usefulness of preliminary information in
computing the needed sample size.

8-85. An article in Engineering Horizons (Spring 1990,

p. 26) reported that 117 of 484 new engineering graduates

were planning to continue studying for an advanced degree.

Consider this as a random sample of the 1990 graduating

class.

(a) Find a 90% confidence interval on the proportion of such
graduates planning to continue their education.

(b) Find a 95% confidence interval on the proportion of such
graduates planning to continue their education.

(c) Compare your answers to parts (a) and (b) and explain
why they are the same or different.

(d) Could you use either of these confidence intervals to
determine whether the proportion is actually 0.25?
Explain your answer. Hint: Use the normal approximation
to the binomial.
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MIND-EXPANDING EXERCISES

8-86. An electrical component has a time-to-failure
(or lifetime) distribution that is exponential with param-
eter \, so the mean lifetime is w = 1/\. Suppose that a
sample of n of these components is put on test, and let
X; be the observed lifetime of component i. The test con-
tinues only until the 7th unit fails, where » < n. This re-
sults in a censored life test. Let X denote the time at
which the first failure occurred, X, denote the time at
which the second failure occurred, and so on. Then the
total lifetime that has been accumulated at test termina-
tion is
r
T,=> X, +(n—rX

i=1

We have previously shown in Exercise 7-72 that 7,/r is

an unbiased estimator for .

(a) It can be shown that 2\ 7, has a chi-square distribution
with 2r degrees of freedom. Use this fact to develop a
100(1 — «)% confidence interval for mean lifetime
w=1/\

(b) Suppose 20 units were put on test, and the test
terminated after 10 failures occurred. The failure
times (in hours) are 15, 18, 19, 20, 21, 21, 22, 27,
28, 29. Find a 95% confidence interval on mean
lifetime.

8-87. Consider a two-sided confidence interval for
the mean p when o is known;

)?—quo'/\/ﬁs ;LS)?+ZOL20'/\/I;

where a; + o, = . [f a; = @, = /2, we have the usual
100(1 — )% confidence interval for w. In the above,
when a; # oy, the interval is not symmetric about ..
The length of the interval is L = o(z,, + 2,,)/ V.
Prove that the length of the interval L is minimized when
a; = o, = /2. Hint: Remember that (z,) = 1 — «,
so ®!(1 — «) = z,, and the relationship between the
derivative of a function y = f(x) and the inverse
x = £y is (d/dv)f () = 1/[(dfebx) ().

8-88. It is possible to construct a nonparametric tol-
erance interval that is based on the extreme values in a
random sample of size » from any continuous population.
If p is the minimum proportion of the population con-
tained between the smallest and largest sample observa-
tions with confidence 1 — «, it can be shown that

n—1

np" = (n— 1p" =«

and » is approximately

1+ a
n:l-l- i
2 1—p 4

(a) In order to be 95% confident that at least 90% of the
population will be included between the extreme
values of the sample, what sample size will be re-
quired?

(b) A random sample of 10 transistors gave the follow-
ing measurements on saturation current (in mil-
liamps): 10.25, 10.41, 10.30, 10.26, 10.19, 10.37,
10.29, 10.34, 10.23, 10.38. Find the limits that con-
tain a proportion p of the saturation current meas-
urements at 95% confidence. What is the proportion
p contained by these limits?

8-89. Suppose that X, X,, ... , X, is a random

sample from a continuous probability distribution

with median .

(a) Show that

P {min(X;) < ji < max (X))}

Hint: The complement of the event [min(X;) < [

< max(X;)] is [max(X;) = f] U [min(X;) = ], but

max(X;) = fi ifand only if X; = {i for all ;. ]

(b) Write down a 100(1 — a)% confidence interval for
the median {i, where

SO

8-90. Students in the industrial statistics lab at ASU
calculate a lot of confidence intervals on . Suppose all
these Cls are independent of each other. Consider the
next one thousand 95% confidence intervals that will be
calculated. How many of these ClIs do you expect to
capture the true value of w? What is the probability that
between 930 and 970 of these intervals contain the true
value of w?
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8-2.6 Bootstrap Confidence Intervals (CD Only)

In Section 7-2.5 we showed how a technique called the bootstrap could be used to estimate
the standard error o g, where 6 is an estimate of a parameter 6. We can also use the bootstrap
to find a confidence interval on the parameter 8. To illustrate, consider the case where 0 is the
mean p of a normal distribution with o known. Now the estimator of 0 is .X. Also notice that
2420/ Vn is the 100(1 — o/2) percentile of the distribution of X — ., and —z,/,6/Vn is
the 100(at/2) percentile of this distribution. Therefore, we can write the probability statement
associated with the 100(1 — «)% confidence interval as

P(100(t/2) percentile = X — p = 100(1 — «/2) percentile) = 1 — a

or

P(X — 100(1 — «/2) percentile = w = X — 100(t/2) percentile) = 1 — a

This last probability statement implies that the lower and upper 100(1 — )% confidence lim-
its for . are

L =X—100(1 — a/2) percentile of X — u = X — za/z(r/\/lz
U = X — 100(/2) percentile of X — p = X + z,,0/Vn

We may generalize this to an arbitrary parameter 6. The 100(1 — a)% confidence limits
for 0 are

L =0 —100(1 — a/2)percentile of & — 0
U =6 — 100(c/2) percentile of & — 6

Unfortunately, the percentiles of § — 6 may not be as easy to find as in the case of the normal
distribution mean. However, they could be estimated from bootstrap samples. Suppose we
ﬁnd B bootstrap samples and calculate 6], 65, ..., 65 and 6" and then calculate 61 -0,
62 —0",...,0; » — 0. The required percentiles can be obtained directly from the differences.
For example if B =200 and a 95% confidence interval on 8 is desired, the fifth smallest and
fifth largest of the differences §; — 0 are the estimates of the necessary percentiles.

We will illustrate this procedure using the situation first described in Example 7-3,
involving the parameter A of an exponential distribution. Following that example, a random
sample of n = 8 engine controller modules were tested to failure, and the estimate of A
obtained was A = 0.0462, where A=1 /X is a maximum likelihood estimator. We used 200
bootstrap samples to obtain an estimate of the standard error for A.

Figure S8-1(a) is a histogram of the 200 bootstrap estimates Xf, i=1,2,...,200. Notice
that the histogram is not symmetrical and is skewed to the right, indicating that the sam-
pling distribution of A also has this same shape We subtracted the sample average of these
bootstrap estimates A * = 0.5013 from each /\ The histogram of the differences )\ -\,

=1,2,...,200, is shown in Figure S8-1(b). Suppose we w1sh to ﬁnd a 90% conﬁdence inter-
val for )\ Now the fifth percentile of the bootstrap samples /\ — A is —0.0228 and the ninety-
fifth percentile is 0.03135. Therefore the lower and upper 90% bootstrap confidence limits are

L = A — 95 percentile of A; — X" = 0.0462 — 0.03135 = 0.0149
U= A~ 5percentile of A; — A" = 0.0462 — (—0.0228) = 0.0690
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Figure S8-1 Histograms of the bootstrap estimates of A and the differences X;k — A7 usedin finding the bootstrap
confidence interval.

Therefore, our 90% bootstrap confidence interval for A is 0.0149 = A = 0.0690. There is an
exact confidence interval for the parameter A in an exponential distribution. For the engine
controller failure data following Example 7-3, the exact 90% confidence interval* for A is
0.0230 = N\ = 0.0759. Notice that the two confidence intervals are very similar. The length of
the exact confidence interval is 0.0759 — 0.0230 = 0.0529, while the length of the bootstrap
confidence interval is 0.0690 — 0.0149 = 0.0541, which is only slightly longer. The per-
centile method for bootstrap confidence intervals works well when the estimator is unbiased
and the standard error of 6 is approximately constant (as a function of 6). An improvement,
known as the bias-corrected and accelerated method, adjusts the percentiles in more general
cases. It could be applied in this example (because A is a biased estimator), but at the cost of
additional complexity.

8-3.2 Development of the t-Distribution (CD Only)

We will give a formal development of the #-distribution using the techniques presented in
Section 5-8. It will be helpful to review that material before reading this section.
First consider the random variable

This quantity can be written as

- oVn (S8-1)
\V S%/c?

*The confidence interval is X32,/(22 %) = A = X}_o22,/(2Z x;) where X322, and X322, are the lower and
upper a/2 percentage points of the chi-square distribution (which was introduced briefly in Chapter 4 and discussed
further in Section 8-4), and the x; are the n sample observations.
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Now the numerator of Equation S8-1 is a standard normal random variable. The ratio $%/o? in
the denominator is a chi-square random variable with n — 1 degrees of freedom, divided by
the number of degrees of freedom*. Furthermore, the two random variables in Equation
S8-1, X and S, are independent. We are now ready to state and prove the main result.

Let Z be a standard normal random variable and ¥ be a chi-square random variable with
k degrees of freedom. If Z and V are independent, the distribution of the random variable

_z
\V/k

is the #-distribution with & degrees of freedom. The probability density function is

Tk + 1)/2] !
T kT (k/2) [(F/R) + 1JED2

1)

—o < ®

Proof Since Z and V are independent, their probability distribution is

k21

-, €
V2w 22T (12‘)

SE2 << 0<p<®

fZV(Za V) =

Define a new random variable U = V. Thus, the inverse solutions of

zZ
Z —
Vv/k
and
u=yv
are
[
z k
and
Vv=u
The Jacobian is
L u
J = k 2uk| =Nk
0 1

*We use the fact that (n — 1)S/a2 follows a chi-square distribution with n — 1 degrees of freedom in Section 8-4
to find a confidence interval on the variance and standard deviation of a normal distribution.



Thus,

] =/~
k

and the joint probability distribution of 7"and U is

Sru(t,u) = _ Vu Ly D=1~/ +d)/2

VZwka/2F<I;>

Now, since V' > 0, we must require that U > 0, and since — < Z < o0, —o0 < T'<< 2, On
rearranging this last equation, we have

1

N
u
\/ 21 k2K°T <]2€>

kfl)/zef(u/Z)[(rz/k)Jrl]’ 0<u<o—0<t<o

fTU(t? u) =

The probability distribution of 7 is found by

50 = [ e a

1
=———x J W D2 @EM ] gy,
\ 2mk2M?T (2) 0
T[(k + 1)/2] 1

= —o < w

: \/1?{1“(2‘) [(A/k) + 1]%D2

This is the distribution given in Theorem S8-1.

The probability distribution of the random variable 7" was first published by W. S. Gosset
in a famous 1908 paper. Gosset was employed by the Guiness Brewers in Ireland. Since his
employer discouraged publication of employee research, Gosset published these results under
the pseudonym “Student.” As a result, this probability distribution is sometimes called the
Student #-distribution.
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