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10Statistical Inference
for Two Samples

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Structure comparative experiments involving two samples as hypothesis tests
2. Test hypotheses and construct confidence intervals on the difference in means of two normal

distributions

10-1 INTRODUCTION

10-2 INFERENCE FOR A DIFFERENCE IN
MEANS OF TWO NORMAL DISTRI-
BUTIONS, VARIANCES KNOWN

10-2.1 Hypothesis Tests for a Difference
in Means, Variances Known

10-2.2 Choice of Sample Size

10-2.3 Identifying Cause and Effect

10-2.4 Confidence Interval on a
Difference in Means, Variances
Known

10-3 INFERENCE FOR A DIFFERENCE
IN MEANS OF TWO NORMAL 
DISTRIBUTIONS, VARIANCES
UNKNOWN

10-3.1 Hypothesis Tests for a Difference
in Means, Variances Unknown

10-3.2 More about the Equal Variance
Assumption (CD Only)

10-3.3 Choice of Sample Size

10-3.4 Confidence Interval on the
Difference in Means

10-4 PAIRED t-TEST

10-5 INFERENCES ON THE VARIANCES
OF TWO NORMAL POPULATIONS

10-5.1 The F Distribution

10-5.2 Development of the F
Distribution (CD Only)

10-5.3 Hypothesis Tests on the Ratio
of Two Variances

10-5.4 �-Error and Choice of Sample
Size

10-5.5 Confidence Interval on the Ratio
of Two Variances

10-6 INFERENCE ON TWO 
POPULATION PROPORTIONS

10-6.1 Large-Sample Test for H0: p1 � p2

10-6.2 Small-Sample Test for H0: p1 �
p2 (CD Only)

10-6.3 �-Error and Choice of Sample Size

10-6.4 Confidence Interval for p1 � p2

10-7 SUMMARY TABLE FOR INFERENCE
PROCEDURES FOR TWO SAMPLES

c10.qxd  5/16/02  1:30 PM  Page 327 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



328 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

3. Test hypotheses and construct confidence intervals on the ratio of the variances or standard
deviations of two normal distributions

4. Test hypotheses and construct confidence intervals on the difference in two population proportions
5. Use the P-value approach for making decisions in hypotheses tests
6. Compute power, type II error probability, and make sample size decisions for two-sample tests on

means, variances, and proportions
7. Explain and use the relationship between confidence intervals and hypothesis tests

CD MATERIAL
8. Use the Fisher-Irwin test to compare two population proportions when the normal approxima-

tion to the binomial distribution does not apply

Answers for many odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

10-1 INTRODUCTION

The previous chapter presented hypothesis tests and confidence intervals for a single popula-
tion parameter (the mean �, the variance �2, or a proportion p). This chapter extends those
results to the case of two independent populations.

The general situation is shown in Fig. 10-1. Population 1 has mean and variance ,
while population 2 has mean and variance . Inferences will be based on two random
samples of sizes n1 and n2, respectively. That is, X11, X12, p , is a random sample of n1
observations from population 1, and X21, X22, p , is a random sample of n2 observations
from population 2. Most of the practical applications of the procedures in this chapter arise in
the context of simple comparative experiments in which the objective is to study the differ-
ence in the parameters of the two populations.

10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO
NORMAL DISTRIBUTIONS, VARIANCES KNOWN

In this section we consider statistical inferences on the difference in means of two
normal distributions, where the variances and are known. The assumptions for this sec-
tion are summarized as follows.

� 
2
2� 

2
1

�1 � �2

X2n2

X1n1

� 
2
2�2

� 
2
1�1

Figure 10-1 Two 
independent popula-
tions.

�1 �2

Population 1 Population 2

Sample 1:
x11, x12,…, x1n1

 
Sample 2:

x21, x22,…, x2n2
 

�1 �2
2 2
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 329

This result will be used to form tests of hypotheses and confidence intervals on �1 � �2.
Essentially, we may think of �1 � �2 as a parameter �, and its estimator is 
with variance If �0 is the null hypothesis value specified for �, the test 
statistic will be Notice how similar this is to the test statistic for a single mean
used in Equation 9-8 of Chapter 9.

10-2.1 Hypothesis Tests for a Difference in Means, Variances Known

We now consider hypothesis testing on the difference in the means �1 � �2 of two normal
populations. Suppose that we are interested in testing that the difference in means �1 � �2 is
equal to a specified value �0. Thus, the null hypothesis will be stated as H0: �1 � �2 � �0.
Obviously, in many cases, we will specify �0 � 0 so that we are testing the equality of two
means (i.e., H0: �1 � �2). The appropriate test statistic would be found by replacing �1 � �2

in Equation 10-1 by �0, and this test statistic would have a standard normal distribution under
H0. That is, the standard normal distribution is the reference distribution for the test statistic.
Suppose that the alternative hypothesis is H1: �1 � �2 � �0. Now, a sample value of 
that is considerably different from �0 is evidence that H1 is true. Because Z0 has the N(0, 1)

x1 � x2

1	̂ � �02
�	̂ .
�

2
	̂ � �2

1
n1 � �2
2 
n2.

�̂ � X1 � X2

A logical point estimator of �1 � �2 is the difference in sample means Based
on the properties of expected values

and the variance of is

Based on the assumptions and the preceding results, we may state the following.

V1X1 � X22 � V1X12 � V1X22 �
�2

1

n1
�

�2
2

n2

X1 � X2

E1X1 � X22 � E1X12 � E1X22 � �1 � �2

X1 � X2.

1. X11, X12, p , is a random sample from population 1.

2. X21, X22, p , is a random sample from population 2.

3. The two populations represented by X1 and X2 are independent.

4. Both populations are normal.

X2n2

X1n1

Assumptions

The quantity

(10-1)

has a N(0, 1) distribution.

Z �
X1 � X2 � 1�1 � �22B�2

1

n1
�

�2
2

n2
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330 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-1 A product developer is interested in reducing the drying time of a primer paint. Two formula-
tions of the paint are tested; formulation 1 is the standard chemistry, and formulation 2 has a
new drying ingredient that should reduce the drying time. From experience, it is known that
the standard deviation of drying time is 8 minutes, and this inherent variability should be un-
affected by the addition of the new ingredient. Ten specimens are painted with formulation 1,
and another 10 specimens are painted with formulation 2; the 20 specimens are painted in
random order. The two sample average drying times are minutes and 
minutes, respectively. What conclusions can the product developer draw about the effective-
ness of the new ingredient, using � � 0.05?

We apply the eight-step procedure to this problem as follows:

1. The quantity of interest is the difference in mean drying times, �1 � �2, and �0 � 0.

2.

3. We want to reject H0 if the new ingredient reduces mean drying time.

4. � � 0.05

5. The test statistic is

where �2
1 � �2

2 � � 64 and n1 � n2 � 10.

6. Reject H0: �1 � �2 if z0 
 1.645 � z0.05.

7. Computations: Since minutes and minutes, the test statistic is

z0 �
121 � 112B 182210

�
1822
10

� 2.52

x2 � 112x1 � 121

1822

z˛0 �
x1 � x2 � 0B�2

1

n1
�

�2
2

n2

H˛1: �1 
 �2.

H˛0: �1 � �2 � 0, or H˛0:˛  �1 � �2.

x˛2 � 112x˛1 � 121

distribution when H0 is true, we would take �z and z as the boundaries of the critical re-
gion just as we did in the single-sample hypothesis-testing problem of Section 9-2.1. This
would give a test with level of significance �. Critical regions for the one-sided alternatives
would be located similarly. Formally, we summarize these results below.

�
2�
2

Null hypothesis:

Test statistic: (10-2)

Alternative Hypotheses Rejection Criterion

z0 � �z�H˛1: �1 � �2 � �0

z0 
 z�H˛1: �1 � �2 
 �0

z0 
 z�
2 or z0 � �z�
2H˛1: �1 � �2 � �0

Z0 �
X1 � X2 � �0B�2

1

n1
�

�2
2

n2

H0: �1 � �2 � �0
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 331

8. Conclusion: Since z0 � 2.52 � 1.645, we reject H0: �1 � �2 at the � � 0.05 level
and conclude that adding the new ingredient to the paint significantly reduces the
drying time. Alternatively, we can find the P-value for this test as 

P-value � 1 �

Therefore, H0: �1 � �2 would be rejected at any significance level � � 0.0059.

When the population variances are unknown, the sample variances and can be substituted
into the test statistic Equation 10-2 to produce a large-sample test for the difference in means.
This procedure will also work well when the populations are not necessarily normally distrib-
uted. However, both n1 and n2 should exceed 40 for this large-sample test to be valid.

10-2.2 Choice of Sample Size

Use of Operating Characteristic Curves
The operating characteristic curves in Appendix Charts VIa, VIb, VIc, and VId may be used
to evaluate the type II error probability for the hypotheses in the display (10-2). These curves
are also useful in determining sample size. Curves are provided for � � 0.05 and � � 0.01.
For the two-sided alternative hypothesis, the abscissa scale of the operating characteristic
curve in charts VIa and VIb is d, where

(10-3)

and one must choose equal sample sizes, say, n � n1 � n2. The one-sided alternative hypothe-
ses require the use of Charts VIc and VId. For the one-sided alternatives H1: �1 � �2 � �0 or
H1: �1 � �2 	 �0, the abscissa scale is also given by

It is not unusual to encounter problems where the costs of collecting data differ substantially
between the two populations, or where one population variance is much greater than the other.
In those cases, we often use unequal sample sizes. If n1 
 n2, the operating characteristic curves
may be entered with an equivalent value of n computed from

(10-4)

If n1 
 n2, and their values are fixed in advance, Equation 10-4 is used directly to calculate n,
and the operating characteristic curves are entered with a specified d to obtain �. If we are
given d and it is necessary to determine n1 and n2 to obtain a specified �, say, �*, we guess at
trial values of n1 and n2, calculate n in Equation 10-4, and enter the curves with the specified
value of d to find �. If � � �*, the trial values of n1 and n2 are satisfactory. If � 
 �*,
adjustments to n1 and n2 are made and the process is repeated.

n �
�2

1 
 �2
2

�2
1�n1 
 �2

2�n2

d �
ƒ �1 � �2 � �0 ƒ2�1

2 
 �2
2

�
ƒ � � �0 ƒ2�1

2 
 �2
2

d �
ƒ �1 � �2 � �0 ƒ2�2

1 
 �2
2

�
ƒ � � �0 ƒ2�2

1 
 �2
2

s2
2s2

1

�12.522 � 0.0059
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332 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-2 Consider the paint drying time experiment from Example 10-1. If the true difference in mean
drying times is as much as 10 minutes, find the sample sizes required to detect this difference
with probability at least 0.90.

The appropriate value of the abscissa parameter is (since �0 � 0, and � � 10)

and since the detection probability or power of the test must be at least 0.9, with � � 0.05, we
find from Appendix Chart VIc that n � n1 � n2 11.

Sample Size Formulas
It is also possible to obtain formulas for calculating the sample sizes directly. Suppose that the null
hypothesis H0: �1 � �2 � �0 is false and that the true difference in means is �1 � �2 � �,
where � � �0. One may find formulas for the sample size required to obtain a specific value
of the type II error probability � for a given difference in means � and level of significance �.

�

d �
ƒ �1 � �2 ƒ2�2

1 
 �2
2

�
10282 
 82

� 0.88

For the two-sided alternative hypothesis with significance level �, the sample size
n1 � n2 � n required to detect a true difference in means of � with power at least
1 � � is

(10-5)n �
1z��2 
 z�221�2

1 
 �2
22

1� � �022

This approximation is valid when is small compared to �.�1�z��2 � 1� � �021n�1�2
1 
 �2

22

For a one-sided alternative hypothesis with significance level �, the sample size
n1 � n2 � n required to detect a true difference in means of �(��0) with power
at least 1 � � is

(10-6)n �
1z� 
 z�221�2

1 
 �2
22

1� � �022

The derivation of Equations 10-5 and 10-6 closely follows the single-sample case in Section
9-2.3. For example, to obtain Equation 10-6, we first write the expression for the �-error for
the two-sided alternate, which is

� � � ± z��2 �
� � �0B�2

1

n1



�2
2

n2

≤ � �  ±�z��2 �
� � �0B�2

1

n1



�2
2

n2

≤
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 333

where � is the true difference in means of interest. Then by following a procedure similar
to that used to obtain Equation 9-17, the expression for � can be obtained for the case
where n � n1 � n2.

EXAMPLE 10-3 To illustrate the use of these sample size equations, consider the situation described in
Example 10-1, and suppose that if the true difference in drying times is as much as 10 min-
utes, we want to detect this with probability at least 0.90. Under the null hypothesis, �0 � 0.
We have a one-sided alternative hypothesis with � � 10, � � 0.05 (so z� � z0.05 � 1.645),
and since the power is 0.9, � � 0.10 (so z� � z0.10 � 1.28). Therefore we may find the re-
quired sample size from Equation 10-6 as follows:

This is exactly the same as the result obtained from using the O.C. curves.

10-2.3 Identifying Cause and Effect

Engineers and scientists are often interested in comparing two different conditions to deter-
mine whether either condition produces a significant effect on the response that is observed.
These conditions are sometimes called treatments. Example 10-1 illustrates such a situation;
the two different treatments are the two paint formulations, and the response is the drying
time. The purpose of the study is to determine whether the new formulation results in a
significant effect—reducing drying time. In this situation, the product developer (the experi-
menter) randomly assigned 10 test specimens to one formulation and 10 test specimens to the
other formulation. Then the paints were applied to the test specimens in random order until all
20 specimens were painted. This is an example of a completely randomized experiment.

When statistical significance is observed in a randomized experiment, the experimenter can
be confident in the conclusion that it was the difference in treatments that resulted in the differ-
ence in response. That is, we can be confident that a cause-and-effect relationship has been found.

Sometimes the objects to be used in the comparison are not assigned at random to the
treatments. For example, the September 1992 issue of Circulation (a medical journal pub-
lished by the American Heart Association) reports a study linking high iron levels in the body
with increased risk of heart attack. The study, done in Finland, tracked 1931 men for five years
and showed a statistically significant effect of increasing iron levels on the incidence of heart
attacks. In this study, the comparison was not performed by randomly selecting a sample of
men and then assigning some to a “low iron level” treatment and the others to a “high iron
level” treatment. The researchers just tracked the subjects over time. Recall from Chapter 1
that this type of study is called an observational study.

It is difficult to identify causality in observational studies, because the observed statisti-
cally significant difference in response between the two groups may be due to some other
underlying factor (or group of factors) that was not equalized by randomization and not due to
the treatments. For example, the difference in heart attack risk could be attributable to the dif-
ference in iron levels, or to other underlying factors that form a reasonable explanation for the
observed results—such as cholesterol levels or hypertension.

The difficulty of establishing causality from observational studies is also seen in the
smoking and health controversy. Numerous studies show that the incidence of lung cancer and
other respiratory disorders is higher among smokers than nonsmokers. However, establishing

n �
1z� � z�221�2

1 � �2
22

1� � �022 �
11.645 � 1.2822 3 1822 � 1822 4

110 � 022 � 11
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334 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

cause and effect here has proven enormously difficult. Many individuals had decided to
smoke long before the start of the research studies, and many factors other than smoking could
have a role in contracting lung cancer.

10-2.4 Confidence Interval on a Difference in Means, 
Variances Known   

The 100(1 � �)% confidence interval on the difference in two means �1 � �2 when the vari-
ances are known can be found directly from results given previously in this section. Recall
that X11, X12, p , is a random sample of n1 observations from the first population and X21,
X22, p , is a random sample of n2 observations from the second population. The difference
in sample means is a point estimator of �1 � �2, and

has a standard normal distribution if the two populations are normal or is approximately stan-
dard normal if the conditions of the central limit theorem apply, respectively. This implies that

, or

This can be rearranged as

Therefore, the 100(1 � �)% confidence interval for �1 � �2 is defined as follows.

P aX1 � X2 � z�
2B�2
1

n1
�

�2
2

n2
� �1 � �2 � X1 � X2 � z�
2B�2

1

n1
�

�2
2

n2
b � 1 � �

P ≥�z�
2 �
X1 � X2 � 1�1 � �22B�2

1

n1
�

�2
2

n2

� z�
2 ¥ � 1 � �

P1�z�
2 � Z � z�
22 � 1 � �

Z �
X1 � X2 � 1�1 � �22B�2

1

n1
�

�2
2

n2

X1 � X2

X2n2

X1n1

If and are the means of independent random samples of sizes n1 and n2 from
two independent normal populations with known variances �2

1 and �2
2, respectively,

a 100(1 � �)% confidence interval for �1 � �2 is

(10-7)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

x1 � x2 � z�
2B�2
1

n1
�

�2
2

n2
� �1 � �2 � x1 � x2 � z�
2B�2

1

n1
�

�2
2

n2

x2x1

Definition

The confidence level 1 � � is exact when the populations are normal. For nonnormal popu-
lations, the confidence level is approximately valid for large sample sizes.
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 335

EXAMPLE 10-4 Tensile strength tests were performed on two different grades of aluminum spars used in
manufacturing the wing of a commercial transport aircraft. From past experience with the spar
manufacturing process and the testing procedure, the standard deviations of tensile strengths
are assumed to be known. The data obtained are as follows: n1 � 10, � 87.6, �1 � 1,
n2 � 12, � 74.5, and �2 � 1.5. If �1 and �2 denote the true mean tensile strengths for the
two grades of spars, we may find a 90% confidence interval on the difference in mean strength
�1 � �2 as follows:

Therefore, the 90% confidence interval on the difference in mean tensile strength (in kilo-
grams per square millimeter) is

(in kilograms per square millimeter)

Notice that the confidence interval does not include zero, implying that the mean
strength of aluminum grade 1 (�1) exceeds the mean strength of aluminum grade 2 (�2). In
fact, we can state that we are 90% confident that the mean tensile strength of aluminum
grade 1 exceeds that of aluminum grade 2 by between 12.22 and 13.98 kilograms per
square millimeter.

Choice of Sample Size
If the standard deviations �1 and �2 are known (at least approximately) and the two sample
sizes n1 and n2 are equal (n1 � n2 � n, say), we can determine the sample size required so that
the error in estimating �1 � �2 by will be less than E at 100(1 � �)% confidence. The
required sample size from each population is

x1 � x2

12.22 � �1 � �2 � 13.98

87.6 � 74.5 � 1.645 ˛B 112210
�
11.523

12
� �1 � �2 � 87.6 � 74.5 � 1.645 B 1122

10
�
11.522

12

x1 � x2 � z�
2 ˛B�2
1

n1
�

�2
2

n2
 � �1 � �2 � x1 � x2 � z�
2 ˛B�2

1

n1
�

�2
2

n2

x2

x1

(10-8)n � az�
2

E
b2

 1�2
1 � �2

22

Remember to round up if n is not an integer. This will ensure that the level of confidence does
not drop below 100(1 � �)%.

One-Sided Confidence Bounds
One-sided confidence bounds on �1 � �2 may also be obtained. A 100(1 � �)% upper-
confidence bound on �1 � �2 is

(10-9)�1 � �2 � x1 � x2 � z�  B�2
1

n1
�

�2
2

n2
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336 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

(10-10)x1 � x2 � z� B�2
1

n1
�

�2
2

n2
� �1 � �2

EXERCISES FOR SECTION 10-2

and a 100(1 � �)% lower-confidence bound is

10-1. Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The fill volume can be assumed
normal, with standard deviation �1 � 0.020 and �2 � 0.025
ounces. A member of the quality engineering staff suspects
that both machines fill to the same mean net volume, whether
or not this volume is 16.0 ounces. A random sample of 10 bot-
tles is taken from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

(a) Do you think the engineer is correct? Use � � 0.05.
(b) What is the P-value for this test?
(c) What is the power of the test in part (a) for a true differ-

ence in means of 0.04?
(d) Find a 95% confidence interval on the difference in

means. Provide a practical interpretation of this interval.
(e) Assuming equal sample sizes, what sample size should be

used to assure that � � 0.05 if the true difference in
means is 0.04? Assume that � � 0.05.

10-2. Two types of plastic are suitable for use by an elec-
tronics component manufacturer. The breaking strength of this
plastic is important. It is known that �1 � �2 � 1.0 psi. From
a random sample of size n1 � 10 and n2 � 12, we obtain

and . The company will not adopt plas-
tic 1 unless its mean breaking strength exceeds that of plastic
2 by at least 10 psi. Based on the sample information, should
it use plastic 1? Use � � 0.05 in reaching a decision.

10-3. Reconsider the situation in Exercise 10-2. Suppose
that the true difference in means is really 12 psi. Find the
power of the test assuming that � � 0.05. If it is really impor-
tant to detect this difference, are the sample sizes employed in
Exercise 10-2 adequate, in your opinion?

10-4. The burning rates of two different solid-fuel propel-
lants used in aircrew escape systems are being studied. It is
known that both propellants have approximately the same
standard deviation of burning rate; that is �1 � �2 � 3
centimeters per second. Two random samples of n1 � 20

x2 � 155.0x1 � 162.5

and n2 � 20 specimens are tested; the sample mean burn-
ing rates are � 18 centimeters per second and � 24
centimeters per second.
(a) Test the hypothesis that both propellants have the same

mean burning rate. Use � � 0.05.
(b) What is the P-value of the test in part (a)?
(c) What is the �-error of the test in part (a) if the true differ-

ence in mean burning rate is 2.5 centimeters per second?
(d) Construct a 95% confidence interval on the difference in

means �1 � �2. What is the practical meaning of this
interval?

10-5. Two machines are used to fill plastic bottles with
dishwashing detergent. The standard deviations of fill volume
are known to be �1 � 0.10 fluid ounces and �2 � 0.15 fluid
ounces for the two machines, respectively. Two random sam-
ples of n1 � 12 bottles from machine 1 and n2 � 10 bottles
from machine 2 are selected, and the sample mean fill vol-
umes are � 30.87 fluid ounces and � 30.68 fluid
ounces. Assume normality.
(a) Construct a 90% two-sided confidence interval on the

mean difference in fill volume. Interpret this interval.
(b) Construct a 95% two-sided confidence interval on the mean

difference in fill volume. Compare and comment on the
width of this interval to the width of the interval in part (a).

(c) Construct a 95% upper-confidence interval on the mean
difference in fill volume. Interpret this interval.

10-6. Reconsider the situation described in Exercise 10-5.
(a) Test the hypothesis that both machines fill to the same

mean volume. Use � � 0.05.
(b) What is the P-value of the test in part (a)?
(c) If the �-error of the test when the true difference in fill

volume is 0.2 fluid ounces should not exceed 0.1, what
sample sizes must be used? Use � � 0.05.

10-7. Two different formulations of an oxygenated motor fuel
are being tested to study their road octane numbers. The variance
of road octane number for formulation 1 is � 1.5, and for
formulation 2 it is �2

2 � 1.2. Two random samples of size n1 � 15
and n2 � 20 are tested, and the mean road octane numbers
observed are � 89.6 and � 92.5. Assume normality.
(a) Construct a 95% two-sided confidence interval on the

difference in mean road octane number.
(b) If formulation 2 produces a higher road octane number

than formulation 1, the manufacturer would like to detect

x2x1

�2
1

x2x1

x2x1
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO
NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN

We now extend the results of the previous section to the difference in means of the two distribu-
tions in Fig. 10-1 when the variances of both distributions and are unknown. If the sam-
ple sizes n1 and n2 exceed 40, the normal distribution procedures in Section 10-2 could be used.
However, when small samples are taken, we will assume that the populations are normally dis-
tributed and base our hypotheses tests and confidence intervals on the t distribution. This nicely
parallels the case of inference on the mean of a single sample with unknown variance.

10-3.1 Hypotheses Tests for a Difference in Means, Variances Unknown

We now consider tests of hypotheses on the difference in means �1 � �2 of two normal
distributions where the variances and are unknown. A t-statistic will be used to test these
hypotheses. As noted above and in Section 9-3, the normality assumption is required to

�2
2�2

1

�2
2�2

1

it. Formulate and test an appropriate hypothesis, using 
� � 0.05.

(c) What is the P-value for the test you conducted in part (b)?

10-8. Consider the situation described in Exercise 10-4. What
sample size would be required in each population if we wanted
the error in estimating the difference in mean burning rates to be
less than 4 centimeters per second with 99% confidence?

10-9. Consider the road octane test situation described in
Exercise 10-7. What sample size would be required in each pop-
ulation if we wanted to be 95% confident that the error in esti-
mating the difference in mean road octane number is less than 1?

10-10. A polymer is manufactured in a batch chemical
process. Viscosity measurements are normally made on each
batch, and long experience with the process has indicated that
the variability in the process is fairly stable with � � 20.
Fifteen batch viscosity measurements are given as follows:
724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749,
739, 747, 742. A process change is made which involves
switching the type of catalyst used in the process. Following
the process change, eight batch viscosity measurements are
taken: 735, 775, 729, 755, 783, 760, 738, 780. Assume that
process variability is unaffected by the catalyst change. Find a
90% confidence interval on the difference in mean batch vis-
cosity resulting from the process change.

10-11. The concentration of active ingredient in a liquid
laundry detergent is thought to be affected by the type of cata-
lyst used in the process. The standard deviation of active con-
centration is known to be 3 grams per liter, regardless of the
catalyst type. Ten observations on concentration are taken
with each catalyst, and the data follow:

Catalyst 1: 57.9, 66.2, 65.4, 65.4, 65.2, 62.6, 67.6, 63.7,
67.2, 71.0

Catalyst 2: 66.4, 71.7, 70.3, 69.3, 64.8, 69.6, 68.6, 69.4, 65.3,
68.8

(a) Find a 95% confidence interval on the difference in mean
active concentrations for the two catalysts.

(b) Is there any evidence to indicate that the mean active con-
centrations depend on the choice of catalyst? Base your
answer on the results of part (a).

10-12. Consider the polymer batch viscosity data in
Exercise 10-10. If the difference in mean batch viscosity is
10 or less, the manufacturer would like to detect it with a
high probability.
(a) Formulate and test an appropriate hypothesis using � �

0.10. What are your conclusions?
(b) Calculate the P-value for this test.
(c) Compare the results of parts (a) and (b) to the length of the

90% confidence interval obtained in Exercise 10-10 and
discuss your findings.

10-13. For the laundry detergent problem in Exercise 10-11,
test the hypothesis that the mean active concentrations are the
same for both types of catalyst. Use � � 0.05. What is the 
P-value for this test? Compare your answer to that found in
part (b) of Exercise 10-11, and comment on why they are the
same or different.

10-14. Reconsider the laundry detergent problem in
Exercise 10-11. Suppose that the true mean difference in ac-
tive concentration is 5 grams per liter. What is the power of the
test to detect this difference if � � 0.05? If this difference is
really important, do you consider the sample sizes used by the
experimenter to be adequate?

10-15. Consider the polymer viscosity data in Exercise 10-
10. Does the assumption of normality seem reasonable for
both samples?

10-16. Consider the concentration data in Exercise 10-11.
Does the assumption of normality seem reasonable?
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338 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

develop the test procedure, but moderate departures from normality do not adversely affect
the procedure. Two different situations must be treated. In the first case, we assume that the
variances of the two normal distributions are unknown but equal; that is, � � �2. In the
second, we assume that and are unknown and not necessarily equal.

Case 1: �1
2 � �2

2 � �2

Suppose we have two independent normal populations with unknown means �1 and �2, and
unknown but equal variances, � � �2. We wish to test

(10-11)

Let X11, X12, p , be a random sample of n1 observations from the first population and
X21, X22, p , be a random sample of n2 observations from the second population. 
Let , , S2

1, and S2
2 be the sample means and sample variances, respectively. Now the ex-

pected value of the difference in sample means is � �1 � �2, so
is an unbiased estimator of the difference in means. The variance of is

It seems reasonable to combine the two sample variances and to form an estimator
of �2. The pooled estimator of �2 is defined as follows.

S2
2S2

1

V1X1 � X22 �
�2

n1



�2

n2
� �2 a 1

n1



1
n2
b

X1 � X2X1 � X2

E1X1 � X22X1 � X2

X2X1

X2n2

X1n1

H1 
: �1 � �2 
 �0

H0 
: �1 � �2 � �0

�2
2�2

1

�2
2�2

1

�2
2�2

1

The pooled estimator of �2, denoted by S2
p, is defined by

(10-12)Sp
2 �
1n1 � 12S2

1 
 1n2 � 12S2
2

n1 
 n2 � 2

It is easy to see that the pooled estimator can be written as

where 0 	 w � 1. Thus Sp
2 is a weighted average of the two sample variances S1

2 and S2
2,

where the weights w and 1 � w depend on the two sample sizes n1 and n2. Obviously, if n1 �
n2 � n, w � 0.5 and Sp

2 is just the arithmetic average of S1
2 and S2

2. If n1 � 10 and n2 � 20
(say), w � 0.32 and 1 � w � 0.68. The first sample contributes n1 � 1 degrees of freedom
to Sp

2 and the second sample contributes n2 � 1 degrees of freedom. Therefore, Sp
2 has 

n1 
 n2 � 2 degrees of freedom.
Now we know that

has a N(0, 1) distribution. Replacing � by Sp gives the following.

Z �
X1 � X2 � 1�1 � �22

�B 1
n1



1
n2

S2
p �

n1 � 1

n1 
 n2 � 2
S2

1 

n2 � 1

n1 
 n2 � 2
S2

2 � wS2
1 
 11 � w2S2

2

S2
p
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 339

Given the assumptions of this section, the quantity

(10-13)

has a t distribution with n1 � n2 � 2 degrees of freedom.

T �
X1 � X2 � 1�1 � �22

Sp  B 1
n1

�
1
n2

The use of this information to test the hypotheses in Equation 10-11 is now straightfor-
ward: simply replace �1 � �2 by and the resulting test statistic has a t distribution with
n1 � n2 � 2 degrees of freedom under H0: �1 � �2 � . Therefore, the reference distribu-
tion for the test statistic is the t distribution with n1 � n2 � 2 degrees of freedom. The location
of the critical region for both two- and one-sided alternatives parallels those in the one-sample
case. Because a pooled estimate of variance is used, the procedure is often called the pooled 
t-test.

�0

�0,

Null hypothesis: H0: �1 � �2 �

Test statistic: (10-14)

Alternative Hypothesis Rejection Criterion

t0 � �t�,n1�n2�2H1: �1 � �2 � �0

t0 
 t�,n1�n2�2H1: �1 � �2 
 �0

t0 � �t�
2,n1�n2�2

t0 
 t�
2,n1�n2�2 orH1: �1 � �2 � �0

T0 �
X1 � X2 � �0

Sp B 1
n1

�
1
n2

�0

Definition:
The Two-Sample
or Pooled t-Test*

*While we have given the development of this procedure for the case where the sample sizes could be different, there
is an advantage to using equal sample sizes n1 � n2 � n. When the sample sizes are the same from both populations,
the t-test is more robust to the assumption of equal variances. Please see Section 10-3.2 on the CD.

EXAMPLE 10-5 Two catalysts are being analyzed to determine how they affect the mean yield of a chemical
process. Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable. Since catalyst
2 is cheaper, it should be adopted, providing it does not change the process yield. A test is run
in the pilot plant and results in the data shown in Table 10-1. Is there any difference between
the mean yields? Use � � 0.05, and assume equal variances.

The solution using the eight-step hypothesis-testing procedure is as follows:

1. The parameters of interest are �1 and �2, the mean process yield using catalysts 
1 and 2, respectively, and we want to know if �1 � �2 � 0.

2. H0: �1 � �2 � 0, or H0: �1 � �2
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340 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

3. H1: �1 �2

4. � � 0.05

5. The test statistic is

6. Reject H0 if t0 
 t0.025,14 � 2.145 or if t0 � �t0.025,14 � �2.145.

7. Computations: From Table 10-1 we have � 92.255, s1 � 2.39, n1 � 8, � 92.733,
s2 � 2.98, and n2 � 8. Therefore

and

8. Conclusions: Since �2.145 � t0 � �0.35 � 2.145, the null hypothesis cannot be
rejected. That is, at the 0.05 level of significance, we do not have strong evidence to
conclude that catalyst 2 results in a mean yield that differs from the mean yield when
catalyst 1 is used.

A P-value could also be used for decision making in this example. From Appendix Table IV
we find that t0.40,14 � 0.258 and t0.25,14 � 0.692. Therefore, since 0.258 � 0.35 � 0.692, we
conclude that lower and upper bounds on the P-value are 0.50 � P � 0.80. Therefore, since
the P-value exceeds � � 0.05, the null hypothesis cannot be rejected.

t0 �
x1 � x2

2.70˛B 1
n1

�
1
n2

�
92.255 � 92.733

2.70B1
8

�
1
8

� �0.35

sp � 27.30 � 2.70

s2
p �
1n1 � 12s2

1 � 1n2 � 12s2
2

n1 � n2 � 2
�
172 12.3922 � 712.9822

8 � 8 � 2
� 7.30

x2x1

t0 �
x1 � x2 � 0

sp B 1
n1

�
1
n2

�

Table 10-1 Catalyst Yield Data, Example 10-5

Observation
Number Catalyst 1 Catalyst 2

1 91.50 89.19
2 94.18 90.95
3 92.18 90.46
4 95.39 93.21
5 91.79 97.19
6 89.07 97.04
7 94.72 91.07
8 89.21 92.75

� 92.255 � 92.733
s1 � 2.39 s2 � 2.98

x2x1
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 341

The Minitab two-sample t-test and confidence interval procedure for Example 10-5
follows:

Notice that the numerical results are essentially the same as the manual computations in
Example 10-5. The P-value is reported as P � 0.73. The two-sided CI on �1 � �2 is also
reported. We will give the computing formula for the CI in Section 10-3.3. Figure 10-2 shows
the normal probability plot of the two samples of yield data and comparative box plots. The
normal probability plots indicate that there is no problem with the normality assumption.
Furthermore, both straight lines have similar slopes, providing some verification of the as-
sumption of equal variances. The comparative box plots indicate that there is no obvious dif-
ference in the two catalysts, although catalyst 2 has slightly greater sample variability.

Case 2: �2
1 � �2

2

In some situations, we cannot reasonably assume that the unknown variances �2
1 and �2

2 are
equal. There is not an exact t-statistic available for testing H0: �1 � �2 � �0 in this case.
However, if H0: �1 � �2 � �0 is true, the statistic

Two-Sample T-Test and CI: Cat 1, Cat 2

Two-sample T for Cat 1 vs Cat 2

N Mean StDev SE Mean
Cat 1 8 92.26 2.39 0.84
Cat 2 8 92.73 2.99 1.1

Difference � mu Cat 1 � mu Cat 2
Estimate for difference: �0.48
95% CI for difference: (�3.37, 2.42)
T-Test of difference � 0 (vs not � ): T-Value � �0.35 P-Value � 0.730 DF � 14
Both use Pooled StDev � 2.70
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Figure 10-2 Normal probability plot and comparative box plot for the catalyst yield data in Example 10-5. 
(a) Normal probability plot, (b) Box plots.
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342 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

Therefore, if �2
1 � �2

2, the hypotheses on differences in the means of two normal distributions are
tested as in the equal variances case, except that T*

0 is used as the test statistic and n1 � n2 � 2 is
replaced by v in determining the degrees of freedom for the test.

EXAMPLE 10-6 Arsenic concentration in public drinking water supplies is a potential health risk. An article in
the Arizona Republic (Sunday, May 27, 2001) reported drinking water arsenic concentrations
in parts per billion (ppb) for 10 methropolitan Phoenix communities and 10 communities in
rural Arizona. The data follow:

Metro Phoenix Rural Arizona 

Phoenix, 3 Rimrock, 48
Chandler, 7 Goodyear, 44
Gilbert, 25 New River, 40
Glendale, 10 Apachie Junction, 38
Mesa, 15 Buckeye, 33
Paradise Valley, 6 Nogales, 21
Peoria, 12 Black Canyon City, 20
Scottsdale, 25 Sedona, 12
Tempe, 15 Payson, 1
Sun City, 7 Casa Grande, 18

We wish to determine it there is any difference in mean arsenic concentrations between met-
ropolitan Phoenix communities and communities in rural Arizona. Figure 10-3 shows a nor-
mal probability plot for the two samples of arsenic concentration. The assumption of normal-
ity appears quite reasonable, but since the slopes of the two straight lines are very different, it
is unlikely that the population variances are the same.

Applying the eight-step procedure gives the following:

1. The parameters of interest are the mean arsenic concentrations for the two geographic
regions, say, �1 and �2, and we are interested in determining whether �1 � �2 � 0.

2. H0: �1 � �2 � 0, or H0: �1 � �2

1x2 � 27.5, s2 � 15.321x1 � 12.5, s1 � 7.632

(10-15)T 
*
0 �

X1 � X2 � �0BS1
2

n1
�

S2
2

n2

(10-16)v �

aS1
2

n1
�

S2
2

n2
b2

1S1
2
n122

n1 � 1
�
1S2

2
n222
n2 � 1

is distributed approximately as t with degrees of freedom given by
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 343

3. H1: �1 � �2

4. � � 0.05 (say)

5. The test statistic is

6. The degrees of freedom on are found from Equation 10-16 as

Therefore, using � � 0.05, we would reject H0: �1 � �2 if 
 t0.025,13 � 2.160 or if
� �t0.025,13 � �2.160

7. Computations: Using the sample data we find

8. Conclusions: Because � �2.77 � t0.025,13 � �2.160, we reject the null hypoth-
esis. Therefore, there is evidence to conclude that mean arsenic concentration in the
drinking water in rural Arizona is different from the mean arsenic concentration in
metropolitan Phoenix drinking water. Furthermore, the mean arsenic concentration
is higher in rural Arizona communities. The P-value for this test is approximately
P � 0.016.

t*0

t*0 �
x1 � x2B s2

1

n1
�

s2
2

n2

�
12.5 � 27.5B 17.6322
10

�
115.322

10

� �2.77

t*0

t*0

v �

a s1
2

n1
�

s2
2

n2
b2

1s1
2
n122

n1 � 1
�
1s2

2
n222
n2 � 1

�

c 17.6322
10

�
115.322

10
d 2

3 17.6322
10 42
9

�
3 115.322
10 42

9

� 13.2 � 13

t*0

t*0 �
x1 � x2 � 0B s2

1

n1
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Figure 10-3 Normal
probability plot of the 
arsenic concentration
data from Example
10-6.

c10.qxd  5/16/02  1:31 PM  Page 343 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



344 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

The numerical results from Minitab exactly match the calculations from Example 10-6. Note
that a two-sided 95% CI on �1 � �2 is also reported. We will discuss its computation in
Section 10-3.4; however, note that the interval does not include zero. Indeed, the upper 95%
of confidence limit is �3.29 ppb, well below zero, and the mean observed difference is

.

10-3.2 More about the Equal Variance Assumption (CD Only)

10-3.3 Choice of Sample Size

The operating characteristic curves in Appendix Charts VIe, VIf, VIg, and VIh are used to
evaluate the type II error for the case where �2

1 � �2
2 � �2. Unfortunately, when �2

1 � �2
2, the

distribution of is unknown if the null hypothesis is false, and no operating characteristic
curves are available for this case.

For the two-sided alternative H1: �1 � �2 � � � �0, when �2
1 � �2

2 � �2 and n1 � n2 �
n, Charts VIe and VIf are used with

(10-17)

where � is the true difference in means that is of interest. To use these curves, they must be
entered with the sample size � 2n � 1. For the one-sided alternative hypothesis, we use
Charts VIg and VIh and define d and � as in Equation 10-17. It is noted that the parameter d
is a function of �, which is unknown. As in the single-sample t-test, we may have to rely on a
prior estimate of � or use a subjective estimate. Alternatively, we could define the differences
in the mean that we wish to detect relative to �.

EXAMPLE 10-7 Consider the catalyst experiment in Example 10-5. Suppose that, if catalyst 2 produces a mean
yield that differs from the mean yield of catalyst 1 by 4.0%, we would like to reject the null
hypothesis with probability at least 0.85. What sample size is required?

Using sp � 2.70 as a rough estimate of the common standard deviation �, we have
From Appendix Chart VIe with d � 0.74 and � �

0.15, we find n* � 20, approximately. Therefore, since n* � 2n � 1,

and we would use sample sizes of n1 � n2 � n � 11.

n �
n* � 1

2
�

20 � 1
2

� 10.5 � 111say2

d � ƒ � ƒ 
2� � ƒ 4.0 ƒ 
 3 122 12.702 4 � 0.74.

n*

d �
ƒ � � �0 ƒ

2�

T*
0

x1 � x2 � 12 � 5 � 17.5 � �15 ppb

Two-Sample T-Test and CI: PHX, RuralAZ

Two-sample T for PHX vs RuralAZ

N Mean StDev SE Mean
PHX 10 12.50 7.63 2.4
RuralAZ 10 27.5 15.3 4.9

Difference � mu PHX � mu RuralAZ
Estimate for difference: �15.00
95% CI for difference: (�26.71, �3.29)
T-Test of difference � 0 (vs not � ): T-Value � �2.77 P-Value � 0.016 DF � 13

The Minitab output for this example follows:
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 345

Minitab will also perform power and sample size calculations for the two-sample t-test (equal
variances). The output from Example 10-7 is as follows:

Power and Sample Size

2-Sample t Test
Testing mean 1 � mean 2 (versus not �)
Calculating power for mean 1 � mean 2 � difference
Alpha � 0.05 Sigma � 2.7

Sample Target Actual
Difference Size Power Power

4 10 0.8500 0.8793

The results agree fairly closely with the results obtained from the O.C. curve.

10-3.4 Confidence Interval on the Difference in Means

Case 1: �2
1 � �2

2 � �2

To develop the confidence interval for the difference in means �1 � �2 when both variances
are equal, note that the distribution of the statistic

(10-18)

is the t distribution with n1 � n2 � 2 degrees of freedom. Therefore P(�t��2, �2 � T �

t��2, �2) � 1 � �. Now substituting Equation 10-18 for T and manipulating the quan-
tities inside the probability statement will lead to the 100(1 � �)% confidence interval on
�1 � �2.

n1�n2

n1�n2

T �
X1 � X2 � 1�1 � �22

Sp B 1
n1

�
1
n2

If , s2
1 and s2

2 are the sample means and variances of two random samples of
sizes n1 and n2, respectively, from two independent normal populations with un-
known but equal variances, then a 100(1 � �)% confidence interval on the differ-
ence in means �1 � �2 is

(10-19)

where is the pooled estimate 
of the common population standard deviation, and is the upper ��2 
percentage point of the t distribution with n1 � n2 � 2 degrees of freedom.

t�
2, n1�n2�2

sp � 2 3 1n1 � 12  s2
1 � 1n2 � 12  s2

2 4 
 1n1 � n2 � 22
� �1 � �2 � x1 � x2 � t�
2, n1�n2�2˛ sp B 1

n1
�

1
n2

x1 � x2 � t�
2, n1�n2�2˛ sp 
 B 1

n1
�

1
n2

x1, x2

Definition
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346 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-8 An article in the journal Hazardous Waste and Hazardous Materials (Vol. 6, 1989) reported
the results of an analysis of the weight of calcium in standard cement and cement doped
with lead. Reduced levels of calcium would indicate that the hydration mechanism in the
cement is blocked and would allow water to attack various locations in the cement struc-
ture. Ten samples of standard cement had an average weight percent calcium of 
with a sample standard deviation of s1 � 5.0, while 15 samples of the lead-doped cement
had an average weight percent calcium of with a sample standard deviation of
s2 � 4.0.

We will assume that weight percent calcium is normally distributed and find a 95% con-
fidence interval on the difference in means, �1 � �2, for the two types of cement. Furthermore,
we will assume that both normal populations have the same standard deviation.

The pooled estimate of the common standard deviation is found using Equation 10-12 as
follows:

Therefore, the pooled standard deviation estimate is The 95% confi-
dence interval is found using Equation 10-19:

or upon substituting the sample values and using t0.025,23 � 2.069,

which reduces to

Notice that the 95% confidence interval includes zero; therefore, at this level of confidence we
cannot conclude that there is a difference in the means. Put another way, there is no evidence
that doping the cement with lead affected the mean weight percent of calcium; therefore, we
cannot claim that the presence of lead affects this aspect of the hydration mechanism at the
95% level of confidence.

Case 2: �2
1 � �2

2

In many situations it is not reasonable to assume that �2
1 � �2

2. When this assumption is un-
warranted, we may still find a 100(1 � �)% confidence interval on �1 � �2 using the fact
that is distributed approximately as t with
degrees of freedom v given by Equation 10-16. The CI expression follows.

T* � 3X1 � X2 � 1�1 � �22 4 
 ˛2S2
1
n1 � S2

2
n2

�0.72 � �1 � �2 � 6.72

� 90.0 � 87.0 � 2.0691442  B 1
10

�
1
15

90.0 � 87.0 � 2.06914.42  B 1
10

�
1
15

� �1 � �2

x1 � x2 � t0.025,23 sp B 1
n1

�
1
n2

� �1 � �2 � x1 � x2 � t0.025,23 sp B 1
n1

�
1
n2

sp � 119.52 � 4.4.

 � 19.52

 �
915.022 � 1414.022

10 � 15 � 2

 s2
p �
1n1 � 12  s2

1 � 1n2 � 12  s2
2

n1 � n2 � 2

x2 � 87.0,

x1 � 90.0,
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 347

If and s2
2 are the means and variances of two random samples of sizes n1 and

n2, respectively, from two independent normal populations with unknown and unequal
variances, an approximate 100(1 � �)% confidence interval on the difference in
means �1 � �2 is

(10-20)

where v is given by Equation 10-16 and is the upper percentage point of the
t distribution with v degrees of freedom.

�
2t�
2,˛�

x1 � x2 � t�
2, � 
˛B s2

1

n1
�

s2
2

n2
� �1 � �2 � x1 � x2 � t�
2, � 

˛B s2
1

n1
�

s2
2

n2

x1, ˛x2, s
2
1,

Definition

10-20. The deflection temperature under load for two dif-
ferent types of plastic pipe is being investigated. Two random
samples of 15 pipe specimens are tested, and the deflection
temperatures observed are as follows (in �F):

Type 1: 206, 188, 205, 187, 194, 193, 207, 185, 189, 213,
192, 210, 194, 178, 205.

Type 2: 177, 197, 206, 201, 180, 176, 185, 200, 197, 192,
198, 188, 189, 203, 192.

(a) Construct box plots and normal probability plots for the
two samples. Do these plots provide support of the as-
sumptions of normality and equal variances? Write a prac-
tical interpretation for these plots.

(b) Do the data support the claim that the deflection tempera-
ture under load for type 2 pipe exceeds that of type 1? In
reaching your conclusions, use � � 0.05.

(c) Calculate a P-value for the test in part (b).
(d) Suppose that if the mean deflection temperature for type 2

pipe exceeds that of type 1 by as much as 5�F, it is important
to detect this difference with probability at least 0.90. Is the
choice of n1 � n2 � 15 in part (a) of this problem adequate?

10-21. In semiconductor manufacturing, wet chemical etch-
ing is often used to remove silicon from the backs of wafers
prior to metalization. The etch rate is an important characteris-
tic in this process and known to follow a normal distribution.
Two different etching solutions have been compared, using two
random samples of 10 wafers for each solution. The observed
etch rates are as follows (in mils per minute):

Solution 1 Solution 2

9.9 10.6 10.2 10.0

9.4 10.3 10.6 10.2

9.3 10.0 10.7 10.7

9.6 10.3 10.4 10.4

10.2 10.1 10.5 10.3

10-17. The diameter of steel rods manufactured on two dif-
ferent extrusion machines is being investigated. Two random
samples of sizes n1 � 15 and n2 � 17 are selected, and the
sample means and sample variances are � 8.73, s2

1 � 0.35,
� 8.68, and s2

2 � 0.40, respectively. Assume that �2
1 � �2

2

and that the data are drawn from a normal distribution.
(a) Is there evidence to support the claim that the two ma-

chines produce rods with different mean diameters? Use
� � 0.05 in arriving at this conclusion.

(b) Find the P-value for the t-statistic you calculated in
part (a).

(c) Construct a 95% confidence interval for the difference in
mean rod diameter. Interpret this interval.

10-18. An article in Fire Technology investigated two dif-
ferent foam expanding agents that can be used in the nozzles
of fire-fighting spray equipment. A random sample of five ob-
servations with an aqueous film-forming foam (AFFF) had a
sample mean of 4.7 and a standard deviation of 0.6. A random
sample of five observations with alcohol-type concentrates
(ATC) had a sample mean of 6.9 and a standard deviation 0.8.
Find a 95% confidence interval on the difference in mean
foam expansion of these two agents. Can you draw any con-
clusions about which agent produces the greatest mean foam
expansion? Assume that both populations are well represented
by normal distributions with the same standard deviations.

10-19. Two catalysts may be used in a batch chemical
process. Twelve batches were prepared using catalyst 1, re-
sulting in an average yield of 86 and a sample standard devia-
tion of 3. Fifteen batches were prepared using catalyst 2, and
they resulted in an average yield of 89 with a standard devia-
tion of 2. Assume that yield measurements are approximately
normally distributed with the same standard deviation.
(a) Is there evidence to support a claim that catalyst 2 pro-

duces a higher mean yield than catalyst 1? Use � � 0.01.
(b) Find a 95% confidence interval on the difference in mean

yields.

x2

x1

EXERCISES FOR SECTION 10-3
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348 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

and s2 � 3�F. Do the sample data support the claim
that both alloys have the same melting point? Use � � 0.05 and
assume that both populations are normally distributed and have
the same standard deviation. Find the P-value for the test.

10-26. Referring to the melting point experiment in
Exercise 10-25, suppose that the true mean difference in
melting points is 3�F. How large a sample would be required
to detect this difference using an � � 0.05 level test with
probability at least 0.9? Use �1 � �2 � 4 as an initial esti-
mate of the common standard deviation.

10-27. Two companies manufacture a rubber material in-
tended for use in an automotive application. The part will be
subjected to abrasive wear in the field application, so we
decide to compare the material produced by each company in
a test. Twenty-five samples of material from each company
are tested in an abrasion test, and the amount of wear after
1000 cycles is observed. For company 1, the sample mean and
standard deviation of wear are milligrams/1000
cycles and s1 � 2 milligrams/1000 cycles, while for company
2 we obtain milligrams/1000 cycles and s2 � 8 mil-
ligrams/1000 cycles.
(a) Do the data support the claim that the two companies pro-

duce material with different mean wear? Use � � 0.05,
and assume each population is normally distributed but
that their variances are not equal.

(b) What is the P-value for this test?
(c) Do the data support a claim that the material from com-

pany 1 has higher mean wear than the material from com-
pany 2? Use the same assumptions as in part (a).

10-28. The thickness of a plastic film (in mils) on a sub-
strate material is thought to be influenced by the temperature
at which the coating is applied. A completely randomized ex-
periment is carried out. Eleven substrates are coated at 125�F,
resulting in a sample mean coating thickness of 
and a sample standard deviation of s1 � 10.2. Another 13 sub-
strates are coated at 150�F, for which and s2 � 20.1
are observed. It was originally suspected that raising the
process temperature would reduce mean coating thickness. Do
the data support this claim? Use � � 0.01 and assume that the
two population standard deviations are not equal. Calculate an
approximate P-value for this test.

10-29. Reconsider the coating thickness experiment in
Exercise 10-28. How could you have answered the question
posed regarding the effect of temperature on coating thickness
by using a confidence interval? Explain your answer.

10-30. Reconsider the abrasive wear test in Exercise 10-27.
Construct a confidence interval that will address the questions
in parts (a) and (c) in that exercise.

10-31. The overall distance traveled by a golf ball is tested
by hitting the ball with Iron Byron, a mechanical golfer with a
swing that is said to emulate the legendary champion, Byron
Nelson. Ten randomly selected balls of two different brands
are tested and the overall distance measured. The data follow:

x2 � 99.7

x1 � 103.5

x2 � 15

x1 � 20

x2 � 426�F,(a) Do the data support the claim that the mean etch rate is the
same for both solutions? In reaching your conclusions, use
� � 0.05 and assume that both population variances are
equal.

(b) Calculate a P-value for the test in part (a).
(c) Find a 95% confidence interval on the difference in mean

etch rates.
(d) Construct normal probability plots for the two samples.

Do these plots provide support for the assumptions of nor-
mality and equal variances? Write a practical interpreta-
tion for these plots.

10-22. Two suppliers manufacture a plastic gear used in a
laser printer. The impact strength of these gears measured in
foot-pounds is an important characteristic. A random sample
of 10 gears from supplier 1 results in and s1 � 12,
while another random sample of 16 gears from the second
supplier results in and s2 � 22.
(a) Is there evidence to support the claim that supplier 2 pro-

vides gears with higher mean impact strength? Use � �
0.05, and assume that both populations are normally dis-
tributed but the variances are not equal.

(b) What is the P-value for this test?
(c) Do the data support the claim that the mean impact

strength of gears from supplier 2 is at least 25 foot-pounds
higher than that of supplier 1? Make the same assump-
tions as in part (a).

10-23. Reconsider the situation in Exercise 10-22, part (a).
Construct a confidence interval estimate for the difference in
mean impact strength, and explain how this interval could
be used to answer the question posed regarding supplier-
to-supplier differences.
10-24. A photoconductor film is manufactured at a nominal
thickness of 25 mils. The product engineer wishes to increase
the mean speed of the film, and believes that this can be
achieved by reducing the thickness of the film to 20 mils.
Eight samples of each film thickness are manufactured in a pi-
lot production process, and the film speed (in microjoules per
square inch) is measured. For the 25-mil film the sample data
result is and s1 � 0.11, while for the 20-mil film,
the data yield and s2 � 0.09. Note that an increase
in film speed would lower the value of the observation in mi-
crojoules per square inch.
(a) Do the data support the claim that reducing the film thick-

ness increases the mean speed of the film? Use � � 0.10
and assume that the two population variances are equal
and the underlying population of film speed is normally
distributed.

(b) What is the P-value for this test?
(c) Find a 95% confidence interval on the difference in the

two means.
10-25. The melting points of two alloys used in formulating
solder were investigated by melting 21 samples of each material.
The sample mean and standard deviation for alloy 1 was

and s1 � 4�F, while for alloy 2 they werex1 � 420�F

x2 � 1.06
x1 � 1.15

x2 � 321

x1 � 290
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10-4 PAIRED t-TEST

A special case of the two-sample t-tests of Section 10-3 occurs when the observations on
the two populations of interest are collected in pairs. Each pair of observations, say (X1j,
X2j), is taken under homogeneous conditions, but these conditions may change from one
pair to another. For example, suppose that we are interested in comparing two different
types of tips for a hardness-testing machine. This machine presses the tip into a metal spec-
imen with a known force. By measuring the depth of the depression caused by the tip, the
hardness of the specimen can be determined. If several specimens were selected at random,
half tested with tip 1, half tested with tip 2, and the pooled or independent t-test in Section
10-3 was applied, the results of the test could be erroneous. The metal specimens could
have been cut from bar stock that was produced in different heats, or they might not
be homogeneous in some other way that might affect hardness. Then the observed differ-
ence between mean hardness readings for the two tip types also includes hardness differ-
ences between specimens.

A more powerful experimental procedure is to collect the data in pairs—that is, to make
two hardness readings on each specimen, one with each tip. The test procedure would then
consist of analyzing the differences between hardness readings on each specimen. If there is
no difference between tips, the mean of the differences should be zero. This test procedure is
called the paired t-test.

Let (X11, X21), (X12, X22), p , (X1n, X2n) be a set of n paired observations where we assume
that the mean and variance of the population represented by X1 are �1 and �2

1, and the mean
and variance of the population represented by X2 are �2 and �2

2. Define the differences be-
tween each pair of observations as Dj � X1j � X2j, j � 1, 2, p , n. The Dj’s are assumed to be
normally distributed with mean

�D � E1X1 � X22 � E1X12 � E1X22 � �1 � �2

10-4 PAIRED t-TEST 349

Brand 1: 275, 286, 287, 271, 283, 271, 279, 275, 263, 267

Brand 2: 258, 244, 260, 265, 273, 281, 271, 270, 263, 268

(a) Is there evidence that overall distance is approximately
normally distributed? Is an assumption of equal variances
justified?

(b) Test the hypothesis that both brands of ball have equal
mean overall distance. Use � � 0.05.

(c) What is the P-value of the test statistic in part (b)?
(d) What is the power of the statistical test in part (b) to detect

a true difference in mean overall distance of 5 yards?
(e) What sample size would be required to detect a true dif-

ference in mean overall distance of 3 yards with power of
approximately 0.75?

(f) Construct a 95% two-sided CI on the mean difference in
overall distance between the two brands of golf balls.

10-32. In Example 9-6 we described how the “spring-like
effect” in a golf club could be determined by measuring the
coefficient of restitution (the ratio of the outbound velocity to
the inbound velocity of a golf ball fired at the clubhead).
Twelve randomly selected drivers produced by two

clubmakers are tested and the coefficient of restitution meas-
ured. The data follow:

Club 1: 0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562,
0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871

Club 2: 0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465,
0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476

(a) Is there evidence that coefficient of restitution is approxi-
mately normally distributed? Is an assumption of equal
variances justified?

(b) Test the hypothesis that both brands of ball have equal
mean coefficient of restitution. Use � � 0.05.

(c) What is the P-value of the test statistic in part (b)?
(d) What is the power of the statistical test in part (b) to detect

a true difference in mean coefficient of restitution of 0.2?
(e) What sample size would be required to detect a true dif-

ference in mean coefficient of restitution of 0.1 with
power of approximately 0.8?

(f) Construct a 95% two-sided CI on the mean difference in co-
efficient of restitution between the two brands of golf clubs.
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In Equation 10-22, is the sample average of the n differences D1, D2, p , Dn, and SD is the
sample standard deviation of these differences.

EXAMPLE 10-9 An article in the Journal of Strain Analysis (1983, Vol. 18, No. 2) compares several methods
for predicting the shear strength for steel plate girders. Data for two of these methods, the
Karlsruhe and Lehigh procedures, when applied to nine specific girders, are shown in Table
10-2. We wish to determine whether there is any difference (on the average) between the two
methods.

The eight-step procedure is applied as follows:

1. The parameter of interest is the difference in mean shear strength between the two
methods, say, �D � �1 � �2 � 0.

2. H0: �D � 0

D

350 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

Null hypothesis: H0: �D � �0

Test statistic: (10-22)

Alternative Hypothesis Rejection Region

t0 � �t�, n�1H1: �D � �0

t0 
 t�, n�1H1: �D 
 �0

t0 
 t�
2, n�1 or t0 � �t�
2, n�1H1: �D � �0

T0 �
D � �0

SD
1n

The Paired 
t-Test

and variance �2
D, so testing hypotheses about the difference between �1 and �2 can be

accomplished by performing a one-sample t-test on �D. Specifically, testing H0: �1 � �2 �
�0 against H1: �1 � �2 �0 is equivalent to testing

(10-21)

The test statistic is given below.

H1: �D � �0

H0: �D � �0

�

Table 10-2 Strength Predictions for Nine Steel Plate Girders 
(Predicted Load/Observed Load)

Girder Karlsruhe Method Lehigh Method Difference dj

S1�1 1.186 1.061 0.119
S2�1 1.151 0.992 0.159
S3�1 1.322 1.063 0.259
S4�1 1.339 1.062 0.277
S5�1 1.200 1.065 0.138
S2�1 1.402 1.178 0.224
S2�2 1.365 1.037 0.328
S2�3 1.537 1.086 0.451
S2�4 1.559 1.052 0.507
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10-4 PAIRED t-TEST 351

3.

4.

5. The test statistic is

6. Reject H0 if t0 
 t0.025,8 � 2.306 or if t0 � �t0.025,8 � �2.306.

7. Computations: The sample average and standard deviation of the differences dj are 
� 0.2736 and sD � 0.1356, so the test statistic is

8. Conclusions: Since t0 � 6.05 
 2.306, we conclude that the strength prediction
methods yield different results. Specifically, the data indicate that the Karlsruhe
method produces, on the average, higher strength predictions than does the Lehigh
method. The P-value for t0 � 6.05 is P � 0.0002, so the test statistic is well into the
critical region.

Paired Versus Unpaired Comparisons
In performing a comparative experiment, the investigator can sometimes choose between the
paired experiment and the two-sample (or unpaired) experiment. If n measurements are to be
made on each population, the two-sample t-statistic is

which would be compared to t2n�2, and of course, the paired t-statistic is

which is compared to tn�1. Notice that since

the numerators of both statistics are identical. However, the denominator of the two-sample 
t-test is based on the assumption that X1 and X2 are independent. In many paired experiments,
a strong positive correlation � exists between X1 and X2. Then it can be shown that

  �
2�211 � �2

n

  � V1X12 � V1X22 � 2 cov 1X1, X22
 V 1D2 � V1X1 � X2 � �02

D � a
n

j�1
 
Dj

n � a
n

j�1
 
1X1j � X2j2

n �  a
n

j�1
 
X1j

n � a
n

j�1
 
X2j

n � X1 � X2

T0 �
D � �0

SD
1n

T0 �
X1 � X2 � �0

Sp B1
n �

1
n

t0 �
d

sD
1n
�

0.2736

0.1356
19
� 6.05

d

t0 �
d

sD
1n

� � 0.05

H1: �D � 0
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352 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

assuming that both populations X1 and X2 have identical variances �2. Furthermore, S2
D�n

estimates the variance of . Whenever there is positive correlation within the pairs, the de-
nominator for the paired t-test will be smaller than the denominator of the two-sample t-test.
This can cause the two-sample t-test to considerably understate the significance of the data if
it is incorrectly applied to paired samples.

Although pairing will often lead to a smaller value of the variance of , it does
have a disadvantage—namely, the paired t-test leads to a loss of n � 1 degrees of freedom in
comparison to the two-sample t-test. Generally, we know that increasing the degrees of free-
dom of a test increases the power against any fixed alternative values of the parameter.

So how do we decide to conduct the experiment? Should we pair the observations or not?
Although there is no general answer to this question, we can give some guidelines based on
the above discussion.

1. If the experimental units are relatively homogeneous (small �) and the correlation
within pairs is small, the gain in precision attributable to pairing will be offset by the
loss of degrees of freedom, so an independent-sample experiment should be used.

2. If the experimental units are relatively heterogeneous (large �) and there is large pos-
itive correlation within pairs, the paired experiment should be used. Typically, this
case occurs when the experimental units are the same for both treatments; as in
Example 10-9, the same girders were used to test the two methods.

Implementing the rules still requires judgment, because � and � are never known precisely.
Furthermore, if the number of degrees of freedom is large (say, 40 or 50), the loss of n � 1 of
them for pairing may not be serious. However, if the number of degrees of freedom is small
(say, 10 or 20), losing half of them is potentially serious if not compensated for by increased
precision from pairing.

A Confidence Interval for �D

To construct the confidence interval for �D � �1 � �2, note that

follows a t distribution with n � 1 degrees of freedom. Then, since P(�t��2,n�1 � T �
t��2,n�1) � 1 � �, we can substitute for T in the above expression and perform the necessary
steps to isolate �D � �1 � �2 between the inequalities. This leads to the following 100(1 � �)%
confidence interval on �1 � �2.

T �
D � �D

SD
1n

X1 � X2

D

If and sD are the sample mean and standard deviation of the difference of n random
pairs of normally distributed measurements, a 100(1 � �)% confidence interval on
the difference in means �D � �1 � �2 is

(10-23)

where t�/2,n�1 is the upper ��2% point of the t-distribution with n � 1 degrees of
freedom.

d � t�
2, n�1 sD
1n � �D � d � t�
2, n�1 sD
1n

d
Definition
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10-4 PAIRED t-TEST 353

This confidence interval is also valid for the case where , because s2
D estimates �2

D �
V(X1 � X2). Also, for large samples (say, n � 30 pairs), the explicit assumption of normality
is unnecessary because of the central limit theorem.

EXAMPLE 10-10 The journal Human Factors (1962, pp. 375-380) reports a study in which n � 14 subjects
were asked to parallel park two cars having very different wheel bases and turning radii. The
time in seconds for each subject was recorded and is given in Table 10-3. From the column of
observed differences we calculate and sD � 12.68. The 90% confidence interval for
�D � �1 � �2 is found from Equation 9-24 as follows:

Notice that the confidence interval on �D includes zero. This implies that, at the 90% level of con-
fidence, the data do not support the claim that the two cars have different mean parking times �1

and �2. That is, the value �D � �1 � �2 � 0 is not inconsistent with the observed data.

EXERCISES FOR SECTION 10-4

 �4.79 � �D � 7.21

1.21 � 1.771112.682
114 � �D � 1.21 � 1.771112.682
114

 d � t0.05,13 
sD
1n � �D � d � t0.05,13 

sD
1n

d � 1.21

�2
1 � �2

2

Table 10-3 Time in Seconds to Parallel Park Two 
Automobiles

Automobile Difference

Subject 1(x1j) 2(x2j) (dj)

1 37.0 17.8 19.2
2 25.8 20.2 5.6
3 16.2 16.8 �0.6
4 24.2 41.4 �17.2
5 22.0 21.4 0.6
6 33.4 38.4 �5.0
7 23.8 16.8 7.0
8 58.2 32.2 26.0
9 33.6 27.8 5.8

10 24.4 23.2 1.2
11 23.4 29.6 �6.2
12 21.2 20.6 0.6
13 36.2 32.2 4.0
14 29.8 53.8 �24.0

must be normal? Use a normal probability plot to investigate
the normality assumption.

10-35. Consider the parking data in Example 10-10. Use
the paired t-test to investigate the claim that the two types of
cars have different levels of difficulty to parallel park. Use
� � 0.10. Compare your results with the confidence interval
constructed in Example 10-10 and comment on why they are
the same or different.

10-33. Consider the shear strength experiment described in
Example 10-9. Construct a 95% confidence interval on the
difference in mean shear strength for the two methods. Is the
result you obtained consistent with the findings in Example
10-9? Explain why.

10-34. Reconsider the shear strength experiment described
in Example 10-9. Do each of the individual shear strengths
have to be normally distributed for the paired t-test to be ap-
propriate, or is it only the difference in shear strengths that
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10-38. A computer scientist is investigating the usefulness
of two different design languages in improving programming
tasks. Twelve expert programmers, familiar with both lan-
guages, are asked to code a standard function in both lan-
guages, and the time (in minutes) is recorded. The data follow:
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Car Brand 1 Brand 2

1 36,925 34,318

2 45,300 42,280

3 36,240 35,500

4 32,100 31,950

5 37,210 38,015

6 48,360 47,800

7 38,200 37,810

8 33,500 33,215

Time

Design Design
Language Language

Programmer 1 2

1 17 18
2 16 14
3 21 19
4 14 11
5 18 23
6 24 21
7 16 10
8 14 13
9 21 19

10 23 24
11 13 15
12 18 20

Blood Cholesterol Level

Subject Before After

1 265 229

2 240 231

3 258 227

4 295 240

5 251 238

6 245 241

7 287 234

8 314 256

9 260 247

10 279 239

11 283 246

12 240 218

13 238 219

14 225 226

15 247 233

(a) Find a 95% confidence interval on the difference in mean
coding times. Is there any indication that one design lan-
guage is preferable?

(b) Is the assumption that the difference in coding time is nor-
mally distributed reasonable? Show evidence to support
your answer.

10-40. An article in the Journal of Aircraft (Vol. 23, 1986,
pp. 859–864) describes a new equivalent plate analysis
method formulation that is capable of modeling aircraft
structures such as cranked wing boxes and that produces
results similar to the more computationally intensive finite
element analysis method. Natural vibration frequencies for
the cranked wing box structure are calculated using both
methods, and results for the first seven natural frequencies
follow:

Finite Equivalent
Element Plate,

Freq. Cycle/s Cycle/s

1 14.58 14.76

2 48.52 49.10

3 97.22 99.99

4 113.99 117.53

5 174.73 181.22

6 212.72 220.14

7 277.38 294.80

10-36. Reconsider the parking data in Example 10-10.
Investigate the assumption that the differences in parking
times are normally distributed.

10-37. The manager of a fleet of automobiles is testing two
brands of radial tires and assigns one tire of each brand at ran-
dom to the two rear wheels of eight cars and runs the cars un-
til the tires wear out. The data (in kilometers) follow. Find a
99% confidence interval on the difference in mean life. Which
brand would you prefer, based on this calculation?

10-39. Fifteen adult males between the ages of 35 and 50
participated in a study to evaluate the effect of diet and ex-
ercise on blood cholesterol levels. The total cholesterol was
measured in each subject initially and then three months af-
ter participating in an aerobic exercise program and switch-
ing to a low-fat diet. The data are shown in the accompany-
ing table. Do the data support the claim that low-fat diet and
aerobic exercise are of value in producing a mean reduction
in blood cholesterol levels? Use � � 0.05.
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10-42. Two different analytical tests can be used to deter-
mine the impurity level in steel alloys. Eight specimens

Subject Before After

1 195 187
2 213 195
3 247 221
4 201 190
5 187 175
6 210 197
7 215 199
8 246 221
9 294 278

10 310 285

are tested using both procedures, and the results are shown in
the following tabulation. Is there sufficient evidence to con-
clude that both tests give the same mean impurity level,
using � � 0.01?

10-5 INFERENCES ON THE VARIANCES 
OF TWO NORMAL POPULATIONS

We now introduce tests and confidence intervals for the two population variances shown in
Fig. 10-1. We will assume that both populations are normal. Both the hypothesis-testing and
confidence interval procedures are relatively sensitive to the normality assumption.

10-5.1 The F Distribution

Suppose that two independent normal populations are of interest, where the population means
and variances, say, �1, �

2
1, �2, and �2

2, are unknown. We wish to test hypotheses about the
equality of the two variances, say, H0: �

2
1 � �2

2. Assume that two random samples of size n1

from population 1 and of size n2 from population 2 are available, and let S 2
1 and S 2

2 be the sam-
ple variances. We wish to test the hypotheses

(10-24)

The development of a test procedure for these hypotheses requires a new probability
distribution, the F distribution. The random variable F is defined to be the ratio of two

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2

(a) Do the data suggest that the two methods prove the same
mean value for natural vibration frequency? Use � �
0.05.

(b) Find a 95% confidence interval on the mean difference
between the two methods.

10-41. Ten individuals have participated in a diet-modifica-
tion program to stimulate weight loss. Their weight both be-
fore and after participation in the program is shown in the fol-
lowing list. Is there evidence to support the claim that this
particular diet-modification program is effective in producing
a mean weight reduction? Use � � 0.05.

10-43. Consider the weight-loss data in Exercise 10-41. Is
there evidence to support the claim that this particular diet-
modification program will result in a mean weight loss of at
least 10 pounds? Use � � 0.05.

10-44. Consider the weight-loss experiment in Exercise 
10-41. Suppose that, if the diet-modification program results
in mean weight loss of at least 10 pounds, it is important to de-
tect this with probability of at least 0.90. Was the use of 10
subjects an adequate sample size? If not, how many subjects
should have been used?

Specimen Test 1 Test 2

1 1.2 1.4
2 1.3 1.7
3 1.5 1.5
4 1.4 1.3
5 1.7 2.0
6 1.8 2.1
7 1.4 1.7
8 1.3 1.6
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independent chi-square random variables, each divided by its number of degrees of free-
dom. That is,

(10-25)

where W and Y are independent chi-square random variables with u and v degrees of freedom,
respectively. We now formally state the sampling distribution of F.

F �
W
u
Y
v

Let W and Y be independent chi-square random variables with u and v degrees of
freedom, respectively. Then the ratio

(10-26)

has the probability density function

(10-27)

and is said to follow the F distribution with u degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

f 1x2 �

�  au � v

2
b au

vb
u
2

 x 1u
22�1

� au

2
b � av

2
b c  au

vb x � 1 d 1u�v2
2,  0 � x � �

F �
W
u
Y
v

Definition

The mean and variance of the F distribution are � � v�(v � 2) for v 
 2, and

Two F distributions are shown in Fig. 10-4. The F random variable is nonnegative, and the
distribution is skewed to the right. The F distribution looks very similar to the chi-square dis-
tribution; however, the two parameters u and v provide extra flexibility regarding shape.

The percentage points of the F distribution are given in Table V of the Appendix. Let
f�,u,v be the percentage point of the F distribution, with numerator degrees of freedom u and
denominator degrees of freedom v such that the probability that the random variable F ex-
ceeds this value is

This is illustrated in Fig. 10-5. For example, if u � 5 and v � 10, we find from Table V of the
Appendix that

P1F 
 f0.05,5,102 � P1F5,10 
 3.332 � 0.05

P1F 
 f�, u, v2 � �
�

f�,u,v

  f 1x2  dx � �

�2 �
2v21u � v � 22

u1v � 2221v � 42 ,  v 
 4
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That is, the upper 5 percentage point of F5,10 is f0.05,5,10 � 3.33.
Table V contains only upper-tail percentage points (for selected values of f�,u,v for � �

0.25) of the F distribution. The lower-tail percentage points f1��,u,v can be found as follows.
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0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

Figure 10-4 Probability density functions of
two F distributions.

Figure 10-5 Upper and lower percentage
points of the F distribution.

x

α α

f1 – α, , f α, ,u v u v

f (x)

(10-28)f1��,u,v �
1

f�,v,u

For example, to find the lower-tail percentage point f0.95,5,10, note that

10-5.2 Development of the F Distribution (CD Only)

10-5.3 Hypothesis Tests on the Ratio of Two Variances

A hypothesis-testing procedure for the equality of two variances is based on the following result.

f0.95, 5,10 �
1

f0.05,10, 5
�

1
4.74

� 0.211

Let X11, X12, p , X1n1
be a random sample from a normal population with mean �1 and

variance �2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean �2 and variance �2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 � 1 numerator degrees of freedom and n2 � 1 denom-
inator degrees of freedom.

F �
S2

1
�2
1

S2
2
�2

2

S2
2S2

1
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This result is based on the fact that (n1 � 1)S 2
1/�

2
1 is a chi-square random variable with n1 � 1

degrees of freedom, that (n2 � 1)S 2
2��2

2 is a chi-square random variable with n2 � 1 degrees
of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: �

2
1 � �2

2 the ratio has an distribution. This is the basis of
the following test procedure.

Fn1�1,n2�1F0 � S2
1
S 

2
2
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Null hypothesis: 

Test statistic: (10-29)

Alternative Hypotheses Rejection Criterion

f0 � f1��, n1�1,n2�1H1: �
2
1 � �2

2

f0 
 f�,n1�1,n2�1H1: �
2
1 
 �2

2

f0 
 f�
2,n1�1,n2�1 or f0 � f1��
2,n1�1,n2�1H1: �
2
1 � �2

2

F0 �
S2

1

S2
2

H0: �
2
1 � �2

2

EXAMPLE 10-11 Oxide layers on semiconductor wafers are etched in a mixture of gases to achieve the proper
thickness. The variability in the thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent processing steps. Two different mixtures
of gases are being studied to determine whether one is superior in reducing the variability of
the oxide thickness. Twenty wafers are etched in each gas. The sample standard deviations of
oxide thickness are s1 � 1.96 angstroms and s2 � 2.13 angstroms, respectively. Is there any
evidence to indicate that either gas is preferable? Use � � 0.05.

The eight-step hypothesis-testing procedure may be applied to this problem as follows:

1. The parameters of interest are the variances of oxide thickness �2
1 and �2

2. We will
assume that oxide thickness is a normal random variable for both gas mixtures.

2.

3.

4.

5. The test statistic is given by Equation 10-29:

6. Since n1 � n2 � 20, we will reject 
.

7. Computations: Since s2
1 � (1.96)2 � 3.84 and s2

2 � (2.13)2 � 4.54, the test statistic is

8. Conclusions: Since f0.975,19,19 � 0.40 � f0 � 0.85 � f0.025,19,19 � 2.53, we cannot
reject the null hypothesis H0: �

2
1 � �2

2 at the 0.05 level of significance. Therefore,
there is no strong evidence to indicate that either gas results in a smaller variance of
oxide thickness.

f0 �
s2

1

s2
2

�
3.84
4.54

� 0.85

if f0 � f0.975,19,19 � 1
f0.025,19,19 � 1
2.53 � 0.40
H0: �

2
1 � �2

2 if f0 
 f0.025,19,19 � 2.53 or

f0 �
s2

1

s2
2

� � 0.05

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2
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We may also find a P-value for the F-statistic in Example 10-11. Since f0.50,19,19 � 1.00,
the computed value of the test statistic f0 � � 3.84�4.54 � 0.85 is nearer the lower
tail of the F distribution than the upper tail. The probability that an F-random variable with
19 numerator and denominator degrees of freedom is less than 0.85 is 0.3634. Since it is ar-
bitrary which population is identified as “one,” we could have computed the test statistic as
f0 � 4.54�3.84 � 1.18. The probability that an F-random variable with 19 numerator and
denominator degrees of freedom exceeds 1.18 is 0.3610. Therefore, the P-value for the test
statistic f0 � 0.85 is the sum of these two probabilities, or P � 0.3634 � 0.3610 � 0.7244.
Since the P-value exceeds 0.05, the null hypothesis H0: �

2
1 � �2

2 cannot be rejected. (The
probabilities given above were computed using a hand-held calculator.)

10-5.4 	-Error and Choice of Sample Size

Appendix Charts VIo, VIp, VIq, and VIr provide operating characteristic curves for the F-test
given in Section 10-5.1 for � � 0.05 and � � 0.01, assuming that n1 � n2 � n. Charts VIo
and VIp are used with the two-sided alternate hypothesis. They plot � against the abscissa
parameter

(10-30)

for various n1 � n2 � n. Charts VIq and VIr are used for the one-sided alternative hypotheses.

EXAMPLE 10-12 For the semiconductor wafer oxide etching problem in Example 10-11, suppose that one gas
resulted in a standard deviation of oxide thickness that is half the standard deviation of oxide
thickness of the other gas. If we wish to detect such a situation with probability at least 0.80,
is the sample size n1 � n2 � 20 adequate?

Note that if one standard deviation is half the other,

By referring to Appendix Chart VIo with n1 � n2 � n � 20 and � � 2, we find that 
Therefore, if � � 0.20, the power of the test (which is the probability that the difference in
standard deviations will be detected by the test) is 0.80, and we conclude that the sample sizes
n1 � n2 � 20 are adequate.

10-5.5 Confidence Interval on the Ratio of Two Variances

To find the confidence interval on recall that the sampling distribution of

is an F with n2 � 1 and n1 � 1 degrees of freedom. Therefore, �

Substitution for F and manipulation of the inequalities will lead to
the 100(1 � �)% confidence interval for �2

1
�2
2.

f�
2,n2�1, n1�12 � 1 � �.
P1  f1��
2, n2�1, n1�1 � F

F �
S2

2
�2
2

S2
1
�2

1

�2
1
�2

2,

� � 0.20.

� �
�1

�2
� 2

� �
�1

�2

s2
1
s2

2
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EXAMPLE 10-13 A company manufactures impellers for use in jet-turbine engines. One of the operations
involves grinding a particular surface finish on a titanium alloy component. Two different
grinding processes can be used, and both processes can produce parts at identical mean sur-
face roughness. The manufacturing engineer would like to select the process having the
least variability in surface roughness. A random sample of n1 � 11 parts from the first
process results in a sample standard deviation s1 � 5.1 microinches, and a random sample
of n2 � 16 parts from the second process results in a sample standard deviation of s2 � 4.7
microinches. We will find a 90% confidence interval on the ratio of the two standard devi-
ations, 

Assuming that the two processes are independent and that surface roughness is normally
distributed, we can use Equation 10-31 as follows:

or upon completing the implied calculations and taking square roots,

Notice that we have used Equation 10-28 to find f0.95,15,10 � 1�f0.05,10,15 � 1�2.54 � 0.39.
Since this confidence interval includes unity, we cannot claim that the standard deviations of
surface roughness for the two processes are different at the 90% level of confidence.

EXERCISES FOR SECTION 10-5

0.678 �
�1

�2
� 1.887

 
15.122
14.722 0.39 �

�2
1

�2
2

�
15.122
14.722 2.85

s2
1

s2
2
  f0.95,15,10 �

�2
1

�2
2

�
s2

1

s2
2
  f0.05,15,10

�1
�2.
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If and are the sample variances of random samples of sizes n1 and n2, respec-
tively, from two independent normal populations with unknown variances and 
then a 100(1 � �)% confidence interval on the ratio is 

(10-31)

where and are the upper and lower ��2 percentage
points of the F distribution with n2 � 1 numerator and n1 � 1 denominator degrees
of freedom, respectively. A confidence interval on the ratio of the standard deviations
can be obtained by taking square roots in Equation 10-31.

f1��
2,n2�1,n1�1f�
2,n2�1,n1�1

s2
1

s2
2
  f1��
2,n2�1,n1�1 �

�2
1

�2
2

�
s2

1

s2
2
  f�
2,n2�1,n1�1

�2
1
�2

2

�2
2,�2

1

s2
2s2

1

Definition

10-45. For an F distribution, find the following:
(a) f0.25,5,10 (b) f0.10,24,9

(c) f0.05,8,15 (d) f0.75,5,10

(e) f0.90,24,9 (f ) f0.95,8,15

10-46. For an F distribution, find the following:
(a) f0.25,7,15 (b) f0.10,10,12

(c) f0.01,20,10 (d) f0.75,7,15

(e) f0.90,10,12 (f) f0.99,20,10

10-47. Two chemical companies can supply a raw material.
The concentration of a particular element in this material is
important. The mean concentration for both suppliers is the
same, but we suspect that the variability in concentration may
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10-6 INFERENCE ON TWO POPULATION PROPORTIONS

We now consider the case where there are two binomial parameters of interest, say, p1 and p2,
and we wish to draw inferences about these proportions. We will present large-sample
hypothesis testing and confidence interval procedures based on the normal approximation to
the binomial.

10-6.1 Large-Sample Test for H0: p1 � p2

Suppose that two independent random samples of sizes n1 and n2 are taken from two pop-
ulations, and let X1 and X2 represent the number of observations that belong to the class of in-
terest in samples 1 and 2, respectively. Furthermore, suppose that the normal approximation
to the binomial is applied to each population, so the estimators of the population proportions

differ between the two companies. The standard deviation of
concentration in a random sample of n1 � 10 batches pro-
duced by company 1 is s1 � 4.7 grams per liter, while for
company 2, a random sample of n2 � 16 batches yields s2 �
5.8 grams per liter. Is there sufficient evidence to conclude
that the two population variances differ? Use � � 0.05.

10-48. Consider the etch rate data in Exercise 10-21. Test
the hypothesis H0: �

2
1 � �2

2 against H1: �
2
1 �2

2 using � �
0.05, and draw conclusions.

10-49. Consider the etch rate data in Exercise 10-21.
Suppose that if one population variance is twice as large as the
other, we want to detect this with probability at least 0.90
(using � � 0.05). Are the sample sizes n1 � n2 � 10 adequate?

10-50. Consider the diameter data in Exercise 10-17. Con-
struct the following:
(a) A 90% two-sided confidence interval on �1��2.
(b) A 95% two-sided confidence interval on �1��2. Comment

on the comparison of the width of this interval with the
width of the interval in part (a).

(c) A 90% lower-confidence bound on �1��2.

10-51. Consider the foam data in Exercise 10-18. Construct
the following:
(a) A 90% two-sided confidence interval on �2

1��2
2.

(b) A 95% two-sided confidence interval on �2
1��2

2. Comment
on the comparison of the width of this interval with the
width of the interval in part (a).

(c) A 90% lower-confidence bound on �1��2.

10-52. Consider the film speed data in Exercise 10-24. Test
H0: �

2
1 � �2

2 versus using � � 0.02.

10-53. Consider the gear impact strength data in Exercise
10-22. Is there sufficient evidence to conclude that the vari-
ance of impact strength is different for the two suppliers?
Use � � 0.05.

10-54. Consider the melting point data in Exercise 10-25.
Do the sample data support a claim that both alloys have the

H1: �
2
1 � �2

2

�

same variance of melting point? Use � � 0.05 in reaching
your conclusion.

10-55. Exercise 10-28 presented measurements of plastic
coating thickness at two different application temperatures.
Test H0: �

2
1 � �2

2 against using � � 0.01.

10-56. A study was performed to determine whether men
and women differ in their repeatability in assembling compo-
nents on printed circuit boards. Random samples of 25 men
and 21 women were selected, and each subject assembled the
units. The two sample standard deviations of assembly time
were smen � 0.98 minutes and swomen � 1.02 minutes. Is there
evidence to support the claim that men and women differ in
repeatability for this assembly task? Use � � 0.02 and state
any necessary assumptions about the underlying distribution
of the data.

10-57. Reconsider the assembly repeatability experiment
described in Exercise 10-56. Find a 98% confidence interval
on the ratio of the two variances. Provide an interpretation of
the interval.

10-58. Reconsider the film speed experiment in Exercise
10-24. Suppose that one population standard deviation is 50%
larger than the other. Is the sample size n1 � n2 � 8 adequate
to detect this difference with high probability? Use � � 0.01
in answering this question.

10-59. Reconsider the overall distance data for golf balls in
Exercise 10-31. Is there evidence to support the claim that the
standard deviation of overall distance is the same for both
brands of balls (use � � 0.05)? Explain how this question can
be answered with a 95% confidence interval on .

10-60. Reconsider the coefficient of restitution data in
Exercise 10-32. Do the data suggest that the standard devia-
tion is the same for both brands of drivers (use � � 0.05)?
Explain how to answer this question with a confidence inter-
val on .�1
�2

�1
�2

H1: �
2
1 � �2

2
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and have approximate normal distributions. We are interested in
testing the hypotheses

The statistic

H1: p1 � p2

H0: p1 � p2

P̂2 � X2
n2P̂1 � X1
n1

362 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

(10-32)Z �
P̂1 � P̂2 � 1 p1 � p22Bp111 � p12

n1
�

p211 � p22
n2

is distributed approximately as standard normal and is the basis of a test for H0: p1 � p2.
Specifically, if the null hypothesis H0: p1 � p2 is true, using the fact that p1 � p2 � p, the
random variable

is distributed approximately N(0, 1). An estimator of the common parameter p is

The test statistic for H0: p1 � p2 is then

This leads to the test procedures described below.

Z0 �
P̂1 � P̂2BP̂11 � P̂2

 
a 1

n1
�

1
n2
b

P̂ �
X1 � X2

n1 � n2

Z �
P̂1 � P̂2Bp11 � p2  a 1

n1
�

1
n2
b

Null hypothesis: H0: p1 � p2

Test statistic: (10-33)

Alternative Hypotheses Rejection Criterion

H1: p1 
 p2 z0 
 z�

H1: p1 � p2 z0 � �z�

z0 
 z�
2 or z0 � �z�
2H1: p1 � p2

Z0 �
P̂1 � P̂2BP̂11 � P̂2

 
a 1

n1
�

1
n2
b
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EXAMPLE 10-14 Extracts of St. John’s Wort are widely used to treat depression. An article in the April 18, 2001
issue of the Journal of the American Medical Association (“Effectiveness of St. John’s Wort
on Major Depression: A Randomized Controlled Trial”) compared the efficacy of a standard
extract of St. John’s Wort with a placebo in 200 outpatients diagnosed with major depression.
Patients were randomly assigned to two groups; one group received the St. John’s Wort, and
the other received the placebo. After eight weeks, 19 of the placebo-treated patients showed
improvement, whereas 27 of those treated with St. John’s Wort improved. Is there any reason
to believe that St. John’s Wort is effective in treating major depression? Use � � 0.05.
The eight-step hypothesis testing procedure leads to the following results:

1. The parameters of interest are p1 and p2, the proportion of patients who improve
following treatment with St. John’s Wort ( p1) or the placebo ( p2).

2. H0: p1 � p2

3. H1: p1 � p2

4. � � 0.05

5. The test statistic is

where and

6. Reject H0: p1 � p2 if z0 
 z0.025 � 1.96 or if z0 � �z0.025 � �1.96.

7. Computations: The value of the test statistic is

8. Conclusions: Since z0 � 1.35 does not exceed z0.025, we cannot reject the null hy-
pothesis. Note that the P-value is . There is insufficient evidence to
support the claim that St. John’s Wort is effective in treating major depression.

The following box shows the Minitab two-sample hypothesis test and CI procedure for
proportions. Notice that the 95% CI on p1 � p2 includes zero. The equation for constructing
the CI will be given in Section 10-6.4.

P � 0.177

z0 �
0.27 � 0.19B0.2310.772  a 1

100
�

1
100
b

� 1.35

p̂ �
x1 � x2

n1 � n2
�

19 � 27
100 � 100

� 0.23

p̂1 � 27
100 � 0.27, p̂2 � 19
100 � 0.19, n1 � n2 � 100, 

z0 �
p̂1 � p̂2B p̂11 � p̂2

  
a 1

n1
�

1
n2
b
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Test and CI for Two Proportions

Sample X N Sample p
1 27 100 0.270000
2 19 100 0.190000

Estimate for p(1) � p(2): 0.08
95% CI for p(1) � p(2): (�0.0361186, 0.196119)
Test for p(1) � p(2) � 0 (vs not � 0): Z � 1.35 P-Value � 0.177
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10-6.2 Small-Sample Test for H0: p1 � p2 (CD Only)

10-6.3 �-Error and Choice of Sample Size

The computation of the �-error for the large-sample test of H0: p1 � p2 is somewhat more
involved than in the single-sample case. The problem is that the denominator of the test
statistic Z0 is an estimate of the standard deviation of under the assumption that p1 �
p2 � p. When H0: p1 � p2 is false, the standard deviation of is

(10-34)�P̂1�P̂2
� Bp111 � p12

n1



p211 � p22
n2

P̂1 � P̂2

P̂1 � P̂2
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If the alternative hypothesis is two sided, the �-error is

(10-35)� � c�z��22pq 11�n1 
 1�n22 � 1p1 � p22
�P̂1�P̂2

d

� � � c z��22pq 11�n1 
 1�n22 � 1p1 � p22
�P̂1�P̂2

d

If the alternative hypothesis is H1: p1 � p2,

(10-36)

and if the alternative hypothesis is H1: p1 	 p2,

(10-37)� � 1 � � c�z�2pq 11�n1 
 1�n22 � 1p1 � p22
�P̂1�P̂2

d

� � � c z�2pq 11�n1 
 1�n22 � 1 p1 � p22
�P̂1�P̂2

d

where

and is given by Equation 10-34.�P̂1�P̂2

p �  

n1p1 
 n2 p2

n1 
 n2
  and  q �

n111 � p12 
 n211 � p22
n1 
 n2

For a specified pair of values p1 and p2, we can find the sample sizes n1 � n2 � n required to
give the test of size � that has specified type II error �.
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For a one-sided alternative, replace in Equation 10-38 by z�.

10-6.4 Confidence Interval for p1 � p2

The confidence interval for p1 � p2 can be found directly, since we know that

is a standard normal random variable. Thus P(�z��2 � Z � z��2) � 1 � �, so we can substi-
tute for Z in this last expression and use an approach similar to the one employed previously
to find an approximate 100(1 � �)% two-sided confidence interval for p1 � p2.

Z �
P̂1 � P̂2 � 1 p1 � p22Bp111 � p12

n1



p211 � p22
n2

z��2
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For the two-sided alternative, the common sample size is

(10-38)

where q1 � 1 � p1 and q2 � 1 � p2.

n �
3z��211 p1 
 p22 1q1 
 q22�2 
 z�1p1q1 
 p2q2 42

1 p1 � p222

If and are the sample proportions of observation in two independent random
samples of sizes n1 and n2 that belong to a class of interest, an approximate two-
sided 100(1 � �)% confidence interval on the difference in the true proportions
p1 � p2 is

(10-39)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

� p1 � p2 � p̂1 � p̂2 
 z��2B p̂111 � p̂12
n1



p̂211 � p̂22

n2

p̂1 � p̂2 � z��2B p̂111 � p̂12
n1



p̂211 � p̂22

n2

p̂2p̂1

Definition

EXAMPLE 10-15 Consider the process manufacturing crankshaft bearings described in Example 8-6.
Suppose that a modification is made in the surface finishing process and that, subse-
quently, a second random sample of 85 axle shafts is obtained. The number of defective
shafts in this second sample is 8. Therefore, since n1 � 85, n2 � 85, and

we can obtain an approximate 95% confidence interval on thep̂2 � 8�85 � 0.09,
p̂1 � 0.12,
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difference in the proportion of defective bearings produced under the two processes from
Equation 10-39 as follows:

or

This simplifies to

This confidence interval includes zero, so, based on the sample data, it seems unlikely that the
changes made in the surface finish process have reduced the proportion of defective crank-
shaft bearings being produced.

EXERCISES FOR SECTION 10-6

�0.06 � p1 � p2 � 0.12

� p1 � p2 � 0.12 � 0.09 � 1.96 B0.1210.882
85

�
0.0910.912

85

0.12 � 0.09 � 1.96 B0.1210.882
85

�
0.0910.912

85

� p1 � p2 � p̂1 � p̂2 � z0.025 B p̂111 � p̂12
n1

�
p̂211 � p̂22

n2

p̂1 � p̂2 � z0.025 B p̂111 � p̂12
n1

�
p̂211 � p̂22

n2
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10-61. Two different types of injection-molding machines
are used to form plastic parts. A part is considered defective
if it has excessive shrinkage or is discolored. Two random
samples, each of size 300, are selected, and 15 defective
parts are found in the sample from machine 1 while 8 defec-
tive parts are found in the sample from machine 2. Is it rea-
sonable to conclude that both machines produce the same
fraction of defective parts, using � � 0.05? Find the P-value
for this test.

10-62. Two different types of polishing solution are being
evaluated for possible use in a tumble-polish operation for
manufacturing interocular lenses used in the human eye fol-
lowing cataract surgery. Three hundred lenses were tumble-
polished using the first polishing solution, and of this number
253 had no polishing-induced defects. Another 300 lenses
were tumble-polished using the second polishing solution, and
196 lenses were satisfactory upon completion. Is there any
reason to believe that the two polishing solutions differ? Use
� � 0.01. Discuss how this question could be answered with a
confidence interval on p1 � p2.

10-63. Consider the situation described in Exercise 10-61.
Suppose that p1 � 0.05 and p2 � 0.01.
(a) With the sample sizes given here, what is the power of the

test for this two-sided alternate?

(b) Determine the sample size needed to detect this difference
with a probability of at least 0.9. Use � � 0.05.

10-64. Consider the situation described in Exercise 10-61.
Suppose that p1 � 0.05 and p2 � 0.02.
(a) With the sample sizes given here, what is the power of the

test for this two-sided alternate?
(b) Determine the sample size needed to detect this difference

with a probability of at least 0.9. Use � � 0.05.

10-65. A random sample of 500 adult residents of Maricopa
County found that 385 were in favor of increasing the high-
way speed limit to 75 mph, while another sample of 400 adult
residents of Pima County found that 267 were in favor of the
increased speed limit. Do these data indicate that there is a dif-
ference in the support for increasing the speed limit between
the residents of the two counties? Use � � 0.05. What is the 
P-value for this test?

10-66. Construct a 95% confidence interval on the differ-
ence in the two fractions defective for Exercise 10-61.

10-67. Construct a 95% confidence interval on the differ-
ence in the two proportions for Exercise 10-65. Provide a
practical interpretation of this interval.
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10-7 SUMMARY TABLE FOR INFERENCE PROCEDURES 
FOR TWO SAMPLES

The table in the end papers of the book summarizes all of the two-sample inference procedures
given in this chapter. The table contains the null hypothesis statements, the test statistics, the
criteria for rejection of the various alternative hypotheses, and the formulas for constructing the
100(1 � �)% confidence intervals.
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Supplemental Exercises

10-68. A procurement specialist has purchased 25 resistors
from vendor 1 and 35 resistors from vendor 2. Each resistor’s
resistance is measured with the following results:

Vendor 1

96.8 100.0 100.3 98.5 98.3 98.2

99.6 99.4 99.9 101.1 103.7 97.7

99.7 101.1 97.7 98.6 101.9 101.0

99.4 99.8 99.1 99.6 101.2 98.2

98.6

Vendor 2

106.8 106.8 104.7 104.7 108.0 102.2

103.2 103.7 106.8 105.1 104.0 106.2

102.6 100.3 104.0 107.0 104.3 105.8

104.0 106.3 102.2 102.8 104.2 103.4

104.6 103.5 106.3 109.2 107.2 105.4

106.4 106.8 104.1 107.1 107.7

(a) What distributional assumption is needed to test the claim
that the variance of resistance of product from vendor 1 is
not significantly different from the variance of resistance
of product from vendor 2? Perform a graphical procedure
to check this assumption.

(b) Perform an appropriate statistical hypothesis-testing pro-
cedure to determine whether the procurement specialist
can claim that the variance of resistance of product from
vendor 1 is significantly different from the variance of re-
sistance of product from vendor 2.

10-69. An article in the Journal of Materials Engineering
(1989, Vol. 11, No. 4, pp. 275–282) reported the results of an
experiment to determine failure mechanisms for plasma-
sprayed thermal barrier coatings. The failure stress for one
particular coating (NiCrAlZr) under two different test condi-
tions is as follows:

Failure stress (� 106 Pa) after nine 1-hour cycles: 19.8,
18.5, 17.6, 16.7, 16.7, 14.8, 15.4, 14.1, 13.6

Failure stress (� 106 Pa) after six 1-hour cycles: 14.9,
12.7, 11.9, 11.4, 10.1, 7.9

(a) What assumptions are needed to construct confidence in-
tervals for the difference in mean failure stress under the

two different test conditions? Use normal probability plots
of the data to check these assumptions.

(b) Find a 99% confidence interval on the difference in mean
failure stress under the two different test conditions.

(c) Using the confidence interval constructed in part (b), does
the evidence support the claim that the first test conditions
yield higher results, on the average, than the second?
Explain your answer.

10-70. Consider Supplemental Exercise 10-69.
(a) Construct a 95% confidence interval on the ratio of the

variances, of failure stress under the two different
test conditions.

(b) Use your answer in part (b) to determine whether there is
a significant difference in variances of the two different
test conditions. Explain your answer.

10-71. A liquid dietary product implies in its advertising
that use of the product for one month results in an average
weight loss of at least 3 pounds. Eight subjects use the product
for one month, and the resulting weight loss data are reported
below. Use hypothesis-testing procedures to answer the fol-
lowing questions.

�1
�2,

Initial Final
Subject Weight (lb) Weight (lb)

1 165 161

2 201 195

3 195 192

4 198 193

5 155 150

6 143 141

7 150 146

8 187 183

(a) Do the data support the claim of the producer of the dietary
product with the probability of a type I error set to 0.05?

(b) Do the data support the claim of the producer of the dietary
product with the probability of a type I error set to 0.01?

(c) In an effort to improve sales, the producer is considering
changing its claim from “at least 3 pounds” to “at least 5
pounds.” Repeat parts (a) and (b) to test this new claim.

10-72. The breaking strength of yarn supplied by two man-
ufacturers is being investigated. We know from experience
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with the manufacturers’ processes that �1 � 5 psi and �2 �
4 psi. A random sample of 20 test specimens from each manu-
facturer results in psi and psi, respectively.
(a) Using a 90% confidence interval on the difference in

mean breaking strength, comment on whether or not there
is evidence to support the claim that manufacturer 2 pro-
duces yarn with higher mean breaking strength.

(b) Using a 98% confidence interval on the difference in mean
breaking strength, comment on whether or not there is ev-
idence to support the claim that manufacturer 2 produces
yarn with higher mean breaking strength.

(c) Comment on why the results from parts (a) and (b) are dif-
ferent or the same. Which would you choose to make your
decision and why?

10-73. The Salk polio vaccine experiment in 1954 focused
on the effectiveness of the vaccine in combatting paralytic
polio. Because it was felt that without a control group of
children there would be no sound basis for evaluating the
efficacy of the Salk vaccine, the vaccine was administered to
one group, and a placebo (visually identical to the vaccine
but known to have no effect) was administered to a second
group. For ethical reasons, and because it was suspected that
knowledge of vaccine administration would affect subse-
quent diagnoses, the experiment was conducted in a double-
blind fashion. That is, neither the subjects nor the
administrators knew who received the vaccine and who
received the placebo. The actual data for this experiment are
as follows:

Placebo group: n � 201,299: 110 cases of polio observed

Vaccine group: n � 200,745: 33 cases of polio observed

(a) Use a hypothesis-testing procedure to determine if the
proportion of children in the two groups who contracted
paralytic polio is statistically different. Use a probability
of a type I error equal to 0.05.

(b) Repeat part (a) using a probability of a type I error equal
to 0.01.

(c) Compare your conclusions from parts (a) and (b) and ex-
plain why they are the same or different.

10-74. Consider Supplemental Exercise 10-72. Suppose that
prior to collecting the data, you decide that you want the error in
estimating �1 � �2 by x1 � x2 to be less than 1.5 psi. Specify the
sample size for the following percentage confidence:
(a) 90%
(b) 98%
(c) Comment on the effect of increasing the percentage confi-

dence on the sample size needed.
(d) Repeat parts (a)–(c) with an error of less than 0.75 psi

instead of 1.5 psi.
(e) Comment on the effect of decreasing the error on the sam-

ple size needed.

10-75. A random sample of 1500 residential telephones in
Phoenix in 1990 found that 387 of the numbers were unlisted.

x2 � 91x1 � 88

A random sample in the same year of 1200 telephones in
Scottsdale found that 310 were unlisted.
(a) Find a 95% confidence interval on the difference in the

two proportions and use this confidence interval to deter-
mine if there is a statistically significant difference in
proportions of unlisted numbers between the two cities.

(b) Find a 90% confidence interval on the difference in the
two proportions and use this confidence interval to deter-
mine if there is a statistically significant difference in pro-
portions of unlisted numbers between the two cities.

(c) Suppose that all the numbers in the problem description
were doubled. That is, 774 residents out of 3000 sampled
in Phoenix and 620 residents out of 2400 in Scottsdale had
unlisted phone numbers. Repeat parts (a) and (b) and
comment on the effect of increasing the sample size with-
out changing the proportions on your results.

10-76. In a random sample of 200 Phoenix residents who
drive a domestic car, 165 reported wearing their seat belt regu-
larly, while another sample of 250 Phoenix residents who drive
a foreign car revealed 198 who regularly wore their seat belt.
(a) Perform a hypothesis-testing procedure to determine if

there is a statistically significant difference in seat belt us-
age between domestic and foreign car drivers. Set your
probability of a type I error to 0.05.

(b) Perform a hypothesis-testing procedure to determine if
there is a statistically significant difference in seat belt
usage between domestic and foreign car drivers. Set your
probability of a type I error to 0.1.

(c) Compare your answers for parts (a) and (b) and explain
why they are the same or different.

(d) Suppose that all the numbers in the problem description
were doubled. That is, in a random sample of 400
Phoenix residents who drive a domestic car, 330 re-
ported wearing their seat belt regularly, while another
sample of 500 Phoenix residents who drive a foreign car
revealed 396 who regularly wore their seat belt. Repeat
parts (a) and (b) and comment on the effect of increasing
the sample size without changing the proportions on
your results.

10-77. Consider the previous exercise, which summarized
data collected from drivers about their seat belt usage.
(a) Do you think there is a reason not to believe these data?

Explain your answer.
(b) Is it reasonable to use the hypothesis-testing results from

the previous problem to draw an inference about the dif-
ference in proportion of seat belt usage
(i) of the spouses of these drivers of domestic and foreign

cars? Explain your answer.
(ii) of the children of these drivers of domestic and foreign

cars? Explain your answer.
(iii) of all drivers of domestic and foreign cars? Explain

your answer.
(iv) of all drivers of domestic and foreign trucks? Explain

your answer.
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10-78. Consider the situation described in Exercise 10-62.
(a) Redefine the parameters of interest to be the proportion of

lenses that are unsatisfactory following tumble polishing
with polishing fluids 1 or 2. Test the hypothesis that the two
polishing solutions give different results using � � 0.01.

(b) Compare your answer in part (a) with that for Exercise 10-
62. Explain why they are the same or different.

10-79. Consider the situation of Exercise 10-62, and recall
that the hypotheses of interest are H0: p1 � p2 versus H1: p1 � p2.
We wish to use � � 0.01. Suppose that if p1 � 0.9 and p2 � 0.6,
we wish to detect this with a high probability, say, at least 0.9.
What sample sizes are required to meet this objective?

10-80. A manufacturer of a new pain relief tablet would
like to demonstrate that its product works twice as fast as the
competitor’s product. Specifically, the manufacturer would
like to test

where �1 is the mean absorption time of the competitive prod-
uct and �2 is the mean absorption time of the new product.
Assuming that the variances �2

1 and �2
2 are known, develop a

procedure for testing this hypothesis.

10-81. Suppose that we are testing H0: �1 � �2 versus H1:
�1 � �2, and we plan to use equal sample sizes from the two
populations. Both populations are assumed to be normal with
unknown but equal variances. If we use � � 0.05 and if the
true mean �1 � �2 � �, what sample size must be used for the
power of this test to be at least 0.90?

10-82. Consider the fire-fighting foam expanding agents
investigated in Exercise 10-18, in which five observations of
each agent were recorded. Suppose that, if agent 1 produces a
mean expansion that differs from the mean expansion of agent
1 by 1.5, we would like to reject the null hypothesis with prob-
ability at least 0.95.
(a) What sample size is required?
(b) Do you think that the original sample size in Exercise 

10-18 was appropriate to detect this difference? Explain
your answer.

10-83. A fuel-economy study was conducted for two German
automobiles, Mercedes and Volkswagen. One vehicle of each
brand was selected, and the mileage performance was observed
for 10 tanks of fuel in each car. The data are as follows (in miles
per gallon):

H1: �1 
 2�2

H0: �1 � 2�2

(a) Construct a normal probability plot of each of the data
sets. Based on these plots, is it reasonable to assume that
they are each drawn from a normal population?

(b) Suppose that it was determined that the lowest observa-
tion of the Mercedes data was erroneously recorded and
should be 24.6. Furthermore, the lowest observation of the
Volkswagen data was also mistaken and should be 39.6.
Again construct normal probability plots of each of the
data sets with the corrected values. Based on these new
plots, is it reasonable to assume that they are each drawn
from a normal population?

(c) Compare your answers from parts (a) and (b) and com-
ment on the effect of these mistaken observations on the
normality assumption.

(d) Using the corrected data from part (b) and a 95% confi-
dence interval, is there evidence to support the claim that
the variability in mileage performance is greater for a
Volkswagen than for a Mercedes?

10-84. Reconsider the fuel-economy study in Supplemental
Exercise 10-83. Rework part (d) of this problem using an ap-
propriate hypothesis-testing procedure. Did you get the same
answer as you did originally? Why?

10-85. An experiment was conducted to compare the filling
capability of packaging equipment at two different wineries.
Ten bottles of pinot noir from Ridgecrest Vineyards were ran-
domly selected and measured, along with 10 bottles of pinot
noir from Valley View Vineyards. The data are as follows (fill
volume is in milliliters):

Mercedes Volkswagen

24.7 24.9 41.7 42.8

24.8 24.6 42.3 42.4

24.9 23.9 41.6 39.9

24.7 24.9 39.5 40.8

24.5 24.8 41.9 29.6

Ridgecrest Valley View

755 751 752 753 756 754 757 756

753 753 753 754 755 756 756 755

752 751 755 756

(a) What assumptions are necessary to perform a hypothesis-
testing procedure for equality of means of these data?
Check these assumptions.

(b) Perform the appropriate hypothesis-testing procedure to
determine whether the data support the claim that both
wineries will fill bottles to the same mean volume.

10-86. Consider Supplemental Exercise 10-85. Suppose
that the true difference in mean fill volume is as much as 2
fluid ounces; did the sample sizes of 10 from each vineyard
provide good detection capability when � � 0.05? Explain
your answer.

10-87. A Rockwell hardness-testing machine presses a tip
into a test coupon and uses the depth of the resulting depres-
sion to indicate hardness. Two different tips are being com-
pared to determine whether they provide the same Rockwell
C-scale hardness readings. Nine coupons are tested, with both
tips being tested on each coupon. The data are shown in the
accompanying table.
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(a) State any assumptions necessary to test the claim that both
tips produce the same Rockwell C-scale hardness readings.
Check those assumptions for which you have the information.

(b) Apply an appropriate statistical method to determine if the
data support the claim that the difference in Rockwell 
C-scale hardness readings of the two tips is significantly
different from zero

(c) Suppose that if the two tips differ in mean hardness read-
ings by as much as 1.0, we want the power of the test to be
at least 0.9. For an � � 0.01, how many coupons should
have been used in the test?

10-88. Two different gauges can be used to measure the depth
of bath material in a Hall cell used in smelting aluminum. Each
gauge is used once in 15 cells by the same operator.

(a) State any assumptions necessary to test the claim that
both gauges produce the same mean bath depth read-
ings. Check those assumptions for which you have the
information.

(b) Apply an appropriate statistical procedure to determine if
the data support the claim that the two gauges produce dif-
ferent mean bath depth readings.

(c) Suppose that if the two gauges differ in mean bath depth
readings by as much as 1.65 inch, we want the power of
the test to be at least 0.8. For � � 0.01, how many cells
should have been used?

10-89. An article in the Journal of the Environmental
Engineering Division (“Distribution of Toxic Substances in
Rivers,” 1982, Vol. 108, pp. 639–649) investigates the con-
centration of several hydrophobic organic substances in the
Wolf River in Tennessee. Measurements on hexachloroben-
zene (HCB) in nanograms per liter were taken at different
depth downstream of an abandoned dump site. Data for two
depths follow:
Surface: 3.74, 4.61, 4.00, 4.67, 4.87, 5.12, 4.52, 5.29, 5.74, 5.48
Bottom: 5.44, 6.88, 5.37, 5.44, 5.03, 6.48, 3.89, 5.85, 6.85, 7.16

(a) What assumptions are required to test the claim that
mean HCB concentration is the same at both depths?
Check those assumptions for which you have the infor-
mation.

(b) Apply an appropriate procedure to determine if the data
support the claim in part a.

(c) Suppose that the true difference in mean concentrations is
2.0 nanograms per liter. For � � 0.05, what is the power
of a statistical test for H0: �1 � �2 versus H1: �1 � �2?

(d) What sample size would be required to detect a difference
of 1.0 nanograms per liter at � � 0.05 if the power must
be at least 0.9?

Coupon Tip 1 Tip 2 Coupon Tip 1 Tip 2

1 47 46 6 41 41

2 42 40 7 45 46

3 43 45 8 45 46

4 40 41 9 49 48

5 42 43

Cell Gauge 1 Gauge 2 Cell Gauge 1 Gauge 2

1 46 in. 47 in. 9 52 51
2 50 53 10 47 45
3 47 45 11 49 51
4 53 50 12 45 45
5 49 51 13 47 49
6 48 48 14 46 43
7 53 54 15 50 51
8 56 53

MIND-EXPANDING EXERCISES

10-90. Three different pesticides can be used to control
infestation of grapes. It is suspected that pesticide 3 is
more effective than the other two. In a particular vineyard,
three different plantings of pinot noir grapes are selected
for study. The following results on yield are obtained:

ni

(Bushels/ (Number of
Pesticide Plant) si Plants)

1 4.6 0.7 100

2 5.2 0.6 120

3 6.1 0.8 130

If �i is the true mean yield after treatment with the i th
pesticide, we are interested in the quantity

which measures the difference in mean yields between
pesticides 1 and 2 and pesticide 3. If the sample sizes ni

are large, the estimator (say, ) obtained by replacing
each individual �i by is approximately normal.
(a) Find an approximate 100(1 � �)% large-sample

confidence interval for �.

Xi

�̂

� �
1

2
 1�1 � �22 � �3

xi
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IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Comparative experi-
ments

Critical region for a test
statistic

Identifying cause and
effect

Null and alternative 
hypotheses

One-sided and two-
sided alternative 
hypotheses

Operating characteristic
curves

Paired t-test
Pooled t-test

P-value
Reference distribution

for a test statistic
Sample size determina-

tion for hypothesis
tests and confidence
intervals

Statistical hypotheses
Test statistic

CD MATERIAL
Fisher-Irwin test on two

proportions

MIND-EXPANDING EXERCISES

(b) Do these data support the claim that pesticide 3 is
more effective than the other two? Use � � 0.05 in
determining your answer.

10-91. Suppose that we wish to test H0: �1 � �2

versus H1: �1 � �2, where �2
1 and �2

2 are known. The
total sample size N is to be determined, and the alloca-
tion of observations to the two populations such that 
n1 � n2 � N is to be made on the basis of cost. If the
cost of sampling for populations 1 and 2 are C1 and C2,
respectively, find the minimum cost sample sizes that
provide a specified variance for the difference in sam-
ple means.

10-92. Suppose that we wish to test the hypothesis H0:
�1 � �2 versus H1: �1 � �2, where both variances �2

1 and
�2

2 are known. A total of n1 � n2 � N observations can be
taken. How should these observations be allocated to the
two populations to maximize the probability that H0 will
be rejected if H1 is true and �1 � �2 � � � 0?

10-93. Suppose that we wish to test H0: � � �0 ver-
sus H1: � � �0, where the population is normal with
known �. Let 0 � � � �, and define the critical region
so that we will reject H0 if z0 
 z� or if z0 � �z���,
where z0 is the value of the usual test statistic for these
hypotheses.

(a) Show that the probability of type I error for this test
is �.

(b) Suppose that the true mean is �1 � �0 � �. Derive
an expression for � for the above test.

10-94. Construct a data set for which the paired t-test
statistic is very large, indicating that when this analysis
is used the two population means are different, but t0 for
the two-sample t-test is very small so that the incorrect
analysis would indicate that there is no significant dif-
ference between the means.

10-95. In some situations involving proportions, we
are interested in the ratio � � p1�p2 rather than the differ-
ence p1 � p2. Let � � . We can show that ln( ) has
an approximate normal distribution with the mean (n��)
and variance 
(a) Use the information above to derive a large-sample

confidence interval for ln �.
(b) Show how to find a large-sample CI for �.
(c) Use the data from the St. John’s Wort study in

Example 10-14, and find a 95% CI on � � p1�p2.
Provide a practical interpretation for this CI.

10-96. Derive an expression for � for the test of the
equality of the variances of two normal distributions.
Assume that the two-sided alternative is specified.

3 1n1 � x12
 1n1x12 � 1n2 � x22
 1n2x22 41
2.

�̂p̂2p̂1�̂
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10-3.2 More About the Equal Variance Assumption (CD Only)

In practice, one often has to choose between case 1 and case 2 of the two-sample t-test. In case
1, we assume that � and use the pooled t-test. On the surface this test would seem to have
some advantages. It is a likelihood ratio test, whereas the case 2 test with is not.
Furthermore, it is an exact test (if the assumptions of normality, independence, and equal vari-
ances are correct), whereas the case 2 test is an approximate procedure. However, the pooled 
t-test can be very sensitive to the assumption of equal variances, especially when the sample sizes
are not equal. To help see this, consider the denominator of the test statistic for the pooled t-test:

Because the variances are divided (approximately) by the wrong sample sizes, use of the
pooled t-test when the variances are unequal and when can lead to very frequent er-
roneous conclusions. This is why using n1 � n2 is a good idea in general, and especially when
we are in doubt about the validity of the equal variance assumption.

It would, of course, be possible to perform a test of H0: �1
2 � �2

2 versus and
then use the pooled t-test if the null hypothesis is not rejected. This test is discussed in Section 10-
5. However, the test on variances is much more sensitive to the normality assumption than are 
t-tests. A conservative approach would be to always use the case 2 procedure. Alternatively, one
can use the normal probability plot both as a check of the normality assumption and as a check for
equality of variance. If there is a noticable difference in the slopes of the two straight lines on the
normal probability plot, the case 2 procedure would be preferred, especially when 

10-5.2 Development of the F Distribution (CD Only)

We now give a formal development of the F distribution. The development makes use of the
material in Section 5-8 (CD Only).

n1 � n2.

H1: �
2
1 � �2

2

n1 � n2

Sp B 1
n1

�
1
n2

� B 1n1 � 12S2
1 � 1n2 � 12S2

2

n1 � n2 � 2
 
n1 � n2

n1n2
� BS2

1

n2
�

S2
2

n1

�2
1 � �2

2

�2
2�2

1

Let U1 and U2 be independent chi-square random variables with v1 and v2 degrees of
freedom, respectively. Then the ratio

has the probability density function

This is the F-distribution with v1 degrees of freedom in the numerator and v2 degrees
of freedom in the denominator.

f 1x2 �

� a�1 � �2

2
b a�1

�2
b�1	2

 x�1	2�1

� a�1

2
b � a�2

2
b c a�1

�2
b x � 1 d 1�1��22	2 ,  0 
 x 
 �

F �
U1	�1

U2	�2

Theorem: The
F-Distribution
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Proof Since U1 and U2 are independent chi-square random variables, their joint probability
distribution is

Using the method in Equation S5-4, define the new random variable M � U2. The inverse
solutions of

are

Therefore, the Jacobian is

Thus, the joint probability density function of X and M is

The probability density function of F is

Substituting and , we obtain

f 1x2 �

a�1

�2
b�1	2

x�1	2�1

21�1��22	2 � 
 a�1

2
b �  a�2

2
b

 �
�

0

° 2z
�1

�2
  x � 1

¢
1�1��22	2�1

e�z 2  a�1

�2 
  x � 1b�1 

dz

dm � 2 a�1

�2
  x � 1b�1

 dzz �
m
z   a�1

�2
  x � 1b

 �

a�1

�2
 xb�1	2�1a�1

�2
b

21�1��22	2� a�1

2
b �  a�2

2
b

 �
�

0

m1�1��22	2�1e�1m	2231�1	�22x�14 dm

 f 1x2 � �
�

0

 f 1x, m2 dm

f 1x, m2 �

a�1

�2
 mxb�1	2�1

 m�2	2�1 e� 11	22 31�1	�22mx�m4 a�1

�2
b m

2�1	2�  a�1

2
b 2�2	2 � a�2

2
b

,  0 
 x, m 
 �

J �
†
�1

�2
 m

0

�1

�2
x

1

†
�

�1

�2
 m

u1 �
�1

�2
 mx and u2 � m

x � au1

�1
b^au2

�2
b and m � u2

f 1u1, u22 �
u�1	2�1

1  u�2	2�1
2

2�1	2� 
 a�1

2
b 2�2	2� 

 a�2

2
b

  e�1u1�u22	2,  0 
 u1, u2 
 �
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which is the probability density function in the theorem on page 10-1.

10-6.2 Small-Sample Test for H0: p1 � p2 (CD Only)

Many problems involving the comparison of proportions p1 and p2 have relatively large sam-
ple sizes, so the procedure based on the normal approximation to the binomial is widely used
in practice. However, occasionally, a small-sample-size problem is encountered. In such
cases, the Z-tests are inappropriate and an alternative procedure is required. In this section we
describe a procedure based on the hypergeometric distribution.

Suppose that X1 and X2 are the number of successes in two random samples of size n1 and
n2, respectively. The test procedure requires that we view the total number of successes as
fixed at the value X1 � X2 � Y. Now consider the hypotheses

Given that X1 � X2 � Y, large values of X1 support H1, and small moderate values of X1 sup-
port H0. Therefore, we will reject H0 whenever X1 is sufficiently large.

Since the combined sample of n1 � n2 observations contains X1 � X2 � Y total suc-
cesses, if H0: p1 � p2 the successes are no more likely to be concentrated in the first sample
than in the second. That is, all the ways in which the n1 � n2 responses can be divided into one
sample of n1 responses and a second sample of n2 responses are equally likely. The number of
ways of selecting X1 successes for the first sample leaving Y � X1 successes for the second is

Because outcomes are equally likely, the probability of exactly X1 successes in sample 1 is the
ratio of the number of sample 1 outcomes having X1 successes to the total number of outcomes, or

(S10-1)

given that H0: p1 � p2 is true. We recognize Equation S10-1 as a hypergeometric distribution.
To use Equation S10-1 for hypothesis testing, we would compute the probability of find-

ing a value of X1 at least as extreme as the observed value of X1. Note that this probability is a

P 1X1 � x1 
|  Y success in n1 � n2 responses2 �

a Y

x1
b an1 � n2 � Y

n1 � x1
b

an1 � n2

n1
b

a Y

X1
b an1 � n2 � Y

n1 � X1
b

H1: p1 � p2

H0: p1 � p2

 �

�  a�1 � �2

2
b a�1

�2
b�1	2

 x�1	2�1

�  a�1

2
b �  a�2

2
b a�1

�2
 x � 1b1�1��22	2,  0 
 x 
 �

 �

a�1

�2
b�1	2

 x�1	2�1

�  a�1

2
b �  a�2

2
b a�1

�2
 x � 1b1�1��22	2 �

�

0

z1�1��22	2�1e�z dz

PQ220 6234F.CD(10)  5/16/02  2:41 PM  Page 3 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark F



10-4

P-value. If this P-value is sufficiently small, the null hypothesis is rejected. This approach
could also be applied to lower-tailed and two-tailed alternatives.

EXAMPLE S10-1 Insulating cloth used in printed circuit boards is manufactured in large rolls. The manufacturer
is trying to improve the process yield, that is, the number of defect-free rolls produced. A sam-
ple of 10 rolls contains exactly 4 defect-free rolls. From analysis of the defect types, process
engineers suggest several changes in the process. Following implementation of these changes,
another sample of 10 rolls yields 8 defect-free rolls. Do the data support the claim that the new
process is better than the old one, using 
 � 0.10?

To answer this question, we compute the P-value. In our example, n1 � n2 � 10, y �
8 � 4 � 12, and the observed value of x1 � 8. The values of x1 that are more extreme than 8
are 9 and 10. Therefore

The P-value is P � .0750 � .0095 � .0003 � .0848. Thus, at the level 
 � 0.10, the null
hypothesis is rejected and we conclude that the engineering changes have improved the
process yield.

This test procedure is sometimes called the Fisher-Irwin test. Because the test depends
on the assumption that X1 � X2 is fixed at some value, some statisticians argue against use of
the test when X1 � X2 is not actually fixed. Clearly X1 � X2 is not fixed by the sampling pro-
cedure in our example. However, because there are no other better competing procedures, the
Fisher-Irwin test is often used whether or not X1 � X2 is actually fixed in advance.

 P 1X1 � 10|12 successes2 �

a12

10
b a8

0
b

a20

10
b

� .0003

 P 1X1 � 9|12 successes2 �

a12

9
b a8

1
b

a20

10
b

� .0095

 P 1X1 � 8|12 successes2 �

a12

8
b a2

2
b

a20

10
b

� .0750
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