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CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Design and conduct engineering experiments involving a single factor with an arbitrary number

of levels
2. Understand how the analysis of variance is used to analyze the data from these experiments
3. Assess model adequacy with residual plots
4. Use multiple comparison procedures to identify specific differences between means
5. Make decisions about sample size in single-factor experiments
6. Understand the difference between fixed and random factors
7. Estimate variance components in an experiment involving random factors

Design and Analysis
of Single-Factor
Experiments: The
Analysis of Variance
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13-1 DESIGNIING ENGINEERING EXPERIMENTS 469

8. Understand the blocking principle and how it is used to isolate the effect of nuisance factors
9. Design and conduct experiments involving the randomized complete block design

CD MATERIAL
10. Use operating characteristic curves to make sample size decisions in single-factor random effects

experiment
11. Use Tukey’s test, orthogonal contrasts and graphical methods to identify specific differences

between means.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within 
the e-Text immediately following the section they accompany.

13-1 DESIGNING ENGINEERING EXPERIMENTS

Experiments are a natural part of the engineering and scientific decision-making process.
Suppose, for example, that a civil engineer is investigating the effects of different curing methods
on the mean compressive strength of concrete. The experiment would consist of making up sev-
eral test specimens of concrete using each of the proposed curing methods and then testing the
compressive strength of each specimen. The data from this experiment could be used to determine
which curing method should be used to provide maximum mean compressive strength.

If there are only two curing methods of interest, this experiment could be designed and
analyzed using the statistical hypothesis methods for two samples introduced in Chapter 10.
That is, the experimenter has a single factor of interest—curing methods—and there are only
two levels of the factor. If the experimenter is interested in determining which curing method
produces the maximum compressive strength, the number of specimens to test can be deter-
mined from the operating characteristic curves in Appendix Chart VI, and the t-test can be
used to decide if the two means differ.

Many single-factor experiments require that more than two levels of the factor be con-
sidered. For example, the civil engineer may want to investigate five different curing methods.
In this chapter we show how the analysis of variance (frequently abbreviated ANOVA) can
be used for comparing means when there are more than two levels of a single factor. We will
also discuss randomization of the experimental runs and the important role this concept plays
in the overall experimentation strategy. In the next chapter, we will show how to design and
analyze experiments with several factors.

Statistically based experimental design techniques are particularly useful in the engineering
world for improving the performance of a manufacturing process. They also have extensive
application in the development of new processes. Most processes can be described in terms of
several controllable variables, such as temperature, pressure, and feed rate. By using designed
experiments, engineers can determine which subset of the process variables has the greatest
influence on process performance. The results of such an experiment can lead to

1. Improved process yield

2. Reduced variability in the process and closer conformance to nominal or target
requirements

3. Reduced design and development time

4. Reduced cost of operation
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470 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Experimental design methods are also useful in engineering design activities, where new
products are developed and existing ones are improved. Some typical applications of statisti-
cally designed experiments in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of different materials

3. Selection of design parameters so that the product will work well under a wide vari-
ety of field conditions (or so that the design will be robust)

4. Determination of key product design parameters that affect product performance

The use of experimental design in the engineering design process can result in products that
are easier to manufacture, products that have better field performance and reliability than their
competitors, and products that can be designed, developed, and produced in less time.

Designed experiments are usually employed sequentially. That is, the first experiment 
with a complex system (perhaps a manufacturing process) that has many controllable variables
is often a screening experiment designed to determine which variables are most important.
Subsequent experiments are used to refine this information and determine which adjustments
to these critical variables are required to improve the process. Finally, the objective of the ex-
perimenter is optimization, that is, to determine which levels of the critical variables result in
the best process performance.

Every experiment involves a sequence of activities:

1. Conjecture—the original hypothesis that motivates the experiment.

2. Experiment—the test performed to investigate the conjecture.

3. Analysis—the statistical analysis of the data from the experiment.

4. Conclusion—what has been learned about the original conjecture from the experi-
ment. Often the experiment will lead to a revised conjecture, and a new experiment,
and so forth.

The statistical methods introduced in this chapter and Chapter 14 are essential to good
experimentation. All experiments are designed experiments; unfortunately, some of them
are poorly designed, and as a result, valuable resources are used ineffectively. Statistically
designed experiments permit efficiency and economy in the experimental process, and the
use of statistical methods in examining the data results in scientific objectivity when draw-
ing conclusions.

13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR
EXPERIMENT

13-2.1 An Example

A manufacturer of paper used for making grocery bags is interested in improving the tensile
strength of the product. Product engineering thinks that tensile strength is a function of the
hardwood concentration in the pulp and that the range of hardwood concentrations of practi-
cal interest is between 5 and 20%. A team of engineers responsible for the study decides to in-
vestigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to
make up six test specimens at each concentration level, using a pilot plant. All 24 specimens
are tested on a laboratory tensile tester, in random order. The data from this experiment are
shown in Table 13-1.
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 471

This is an example of a completely randomized single-factor experiment with four levels
of the factor. The levels of the factor are sometimes called treatments, and each treatment has
six observations or replicates. The role of randomization in this experiment is extremely im-
portant. By randomizing the order of the 24 runs, the effect of any nuisance variable that may
influence the observed tensile strength is approximately balanced out. For example, suppose
that there is a warm-up effect on the tensile testing machine; that is, the longer the machine is
on, the greater the observed tensile strength. If all 24 runs are made in order of increasing
hardwood concentration (that is, all six 5% concentration specimens are tested first, followed
by all six 10% concentration specimens, etc.), any observed differences in tensile strength
could also be due to the warm-up effect.

It is important to graphically analyze the data from a designed experiment. Figure 13-1(a)
presents box plots of tensile strength at the four hardwood concentration levels. This figure
indicates that changing the hardwood concentration has an effect on tensile strength; specif-
ically, higher hardwood concentrations produce higher observed tensile strength.
Furthermore, the distribution of tensile strength at a particular hardwood level is reasonably
symmetric, and the variability in tensile strength does not change dramatically as the hard-
wood concentration changes.
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Figure 13-1 (a) Box plots of hardwood concentration data. (b) Display of the model in Equation 13-1 for the completely ran-
domized single-factor experiment.

Table 13-1 Tensile Strength of Paper (psi)

ObservationsHardwood 
Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96
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472 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Graphical interpretation of the data is always useful. Box plots show the variability
of the observations within a treatment (factor level) and the variability between treatments.
We now discuss how the data from a single-factor randomized experiment can be analyzed
statistically.

13-2.2 The Analysis of Variance

Suppose we have a different levels of a single factor that we wish to compare. Sometimes,
each factor level is called a treatment, a very general term that can be traced to the early
applications of experimental design methodology in the agricultural sciences. The response
for each of the a treatments is a random variable. The observed data would appear as shown 
in Table 13-2. An entry in Table 13-2, say yij, represents the jth observation taken under treat-
ment i. We initially consider the case in which there are an equal number of observations, n,
on each treatment.

We may describe the observations in Table 13-2 by the linear statistical model

(13-1)

where Yij is a random variable denoting the (ij)th observation, � is a parameter common to all
treatments called the overall mean, �i is a parameter associated with the ith treatment called
the ith treatment effect, and �ij is a random error component. Notice that the model could
have been written as

where �i � � � �i is the mean of the ith treatment. In this form of the model, we see
that each treatment defines a population that has mean �i, consisting of the overall mean �
plus an effect �i that is due to that particular treatment. We will assume that the errors �ij

are normally and independently distributed with mean zero and variance �2. Therefore,
each treatment can be thought of as a normal population with mean �i and variance �2. See
Fig. 13-1(b).

Equation 13-1 is the underlying model for a single-factor experiment. Furthermore, since
we require that the observations are taken in random order and that the environment (often
called the experimental units) in which the treatments are used is as uniform as possible, this
experimental design is called a completely randomized design.

Yij � �i � �ij e i � 1, 2, p , a

j � 1, 2, p , n

Yij � � � �i � �ij e i � 1, 2, p , a

j � 1, 2, p , n

Table 13-2 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 y11 y12 p y1n y1.
2 y21 y22 p y2n y2.

a ya1 ya2 p yan ya.

y.. y..

ya.

oo�oooooo
y2.
y1.

c13.qxd  5/8/02  9:20 PM  Page 472 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:PQ220 MONT 8/5/2002:Ch 13:



The a factor levels in the experiment could have been chosen in two different ways.
First, the experimenter could have specifically chosen the a treatments. In this situation, we
wish to test hypotheses about the treatment means, and conclusions cannot be extended to
similar treatments that were not considered. In addition, we may wish to estimate the treat-
ment effects. This is called the fixed-effects model. Alternatively, the a treatments could be
a random sample from a larger population of treatments. In this situation, we would like to
be able to extend the conclusions (which are based on the sample of treatments) to all treat-
ments in the population, whether or not they were explicitly considered in the experiment.
Here the treatment effects �i are random variables, and knowledge about the particular ones
investigated is relatively unimportant. Instead, we test hypotheses about the variability of
the �i and try to estimate this variability. This is called the random effects, or components
of variance, model.

In this section we develop the analysis of variance for the fixed-effects model. The 
analysis of variance is not new to us; it was used previously in the presentation of regression
analysis. However, in this section we show how it can be used to test for equality of treatment
effects. In the fixed-effects model, the treatment effects �i are usually defined as deviations
from the overall mean �, so that

(13-2)

Let yi. represent the total of the observations under the ith treatment and represent the average
of the observations under the ith treatment. Similarly, let represent the grand total of all obser-
vations and represent the grand mean of all observations. Expressed mathematically,

(13-3)

where N � an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means �1, �2, . . . , �a. Using
Equation 13-2, we find that this is equivalent to testing the hypotheses

(13-4)

Thus, if the null hypothesis is true, each observation consists of the overall mean � plus a
realization of the random error component �ij. This is equivalent to saying that all N
observations are taken from a normal distribution with mean � and variance �2. Therefore,
if the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA partitions the total variability in the sample data into two component parts.
Then, the test of the hypothesis in Equation 13-4 is based on a comparison of two independ-
ent estimates of the population variance. The total variability in the data is described by the to-
tal sum of squares

SST � a
a

i�1
a

n

j�1
 1 yij � y..22

 H1: �i 	 0 for at least one i

 H0: �1 � �2 � p � �a � 0

 y.. � a
a

i�1
 a

n

j�1
 yij   y.. � y..
N

 yi. � a
n

j�1
 yij  yi. � yi.
n  i � 1, 2, . . . , a

y..
y..

yi.

a
a

i�1
 �i � 0
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474 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

The sum of squares identity is

(13-5)

or symbolically

(13-6)SST � SSTreatments � SSE

a
a

i�1
 a

n

j�1
 1 yij � y..22 � n a

a

i�1
 1  yi. � y..22 � a

a

i�1
 a

n

j�1
 1 yij � yi.22

The expected value of the treatment sum of squares is 

and the expected value of the error sum of squares is

E1SSE2 � a1n � 12�2

E1SS Treatments2 � 1a � 12�2 � n a
a

i�1
 
�i

2

The identity in Equation 13-5 (which is developed in Section 13-4.4 on the CD) shows
that the total variability in the data, measured by the total corrected sum of squares SST, can be
partitioned into a sum of squares of differences between treatment means and the grand mean
denoted SSTreatments and a sum of squares of differences of observations within a treatment from
the treatment mean denoted SSE. Differences between observed treatment means and the
grand mean measure the differences between treatments, while differences of observations
within a treatment from the treatment mean can be due only to random error. 

We can gain considerable insight into how the analysis of variance works by examining
the expected values of SSTreatments and SSE. This will lead us to an appropriate statistic for test-
ing the hypothesis of no differences among treatment means (or all ).�i � 0

There is also a partition of the number of degrees of freedom that corresponds to the sum
of squares identity in Equation 13-5. That is, there are an � N observations; thus, SST has
an � 1 degrees of freedom. There are a levels of the factor, so SSTreatments has a � 1 degrees of
freedom. Finally, within any treatment there are n replicates providing n � 1 degrees of free-
dom with which to estimate the experimental error. Since there are a treatments, we have
a(n � 1) degrees of freedom for error. Therefore, the degrees of freedom partition is

The ratio

is called the mean square for treatments. Now if the null hypothesis �
is true, MSTreatments is an unbiased estimator of �2 because . However,

if H1 is true, MSTreatments estimates �2 plus a positive term that incorporates variation due to the
systematic difference in treatment means.

g a
i�1 �i � 0p � �a � 0

H0: �1 � �2

MSTreatments � SSTreatments 
 1a � 12

an � 1 � a � 1 � a1n � 12

The partition of the total sum of squares is given in the following definition.

Definition
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 475

Note that the error mean square

is an unbiased estimator of �2 regardless of whether or not H0 is true. We can also show that
MSTreatments and MSE are independent. Consequently, we can show that if the null hypothesis H0

is true, the ratio

MSE � SSE
 3a1n � 12 4

(13-7)F0 �
SS Treatments 
 1a � 12

SSE 
 3a 1n � 12 4 �
MS Treatments

MSE

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as

(13-10)SSE � SST � SSTreatments

SS Treatments � a
a

i�1
  

y2
i

n �
y..2

N

SS T � a
a

i�1
 a

n

j�1
 y2

ij �
y..2

N

Definition

has an F-distribution with a � 1 and a (n � 1) degrees of freedom. Furthermore, from the ex-
pected mean squares, we know that MSE is an unbiased estimator of �2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of �2. However, if the null hypothesis is false,
the expected value of MSTreatments is greater than �2. Therefore, under the alternative hypothe-
sis, the expected value of the numerator of the test statistic (Equation 13-7) is greater than the
expected value of the denominator. Consequently, we should reject H0 if the statistic is large.
This implies an upper-tail, one-tail critical region. Therefore, we would reject H0 if

where f0 is the computed value of F0 from Equation 13-7.
Efficient computational formulas for the sums of squares may be obtained by expanding

and simplifying the definitions of SSTreatments and SST. This yields the following results.

f0 � f�, a�1, a 1n�12

The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1 MSTreatments

Error SSE a(n � 1) MSE

Total SST an � 1

MS Treatments

MSE
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476 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

EXAMPLE 13-1 Consider the paper tensile strength experiment described in Section 13-2.1. We can use the
analysis of variance to test the hypothesis that different hardwood concentrations do not affect
the mean tensile strength of the paper.

The hypotheses are

.

We will use � � 0.01. The sums of squares for the analysis of variance are computed from
Equations 13-8, 13-9, and 13-10 as follows:

The ANOVA is summarized in Table 13-4. Since f0.01,3,20 � 4.94, we reject H0 and conclude
that hardwood concentration in the pulp significantly affects the mean strength of the paper.
We can also find a P-value for this test statistic as follows:

Since is considerably smaller than � � 0.01, we have strong evidence to
conclude that H0 is not true.

Minitab Output
Many software packages have the capability to analyze data from designed experiments using
the analysis of variance. Table 13-5 presents the output from the Minitab one-way analysis of
variance routine for the paper tensile strength experiment in Example 13-1. The results agree
closely with the manual calculations reported previously in Table 13-4.

P � 3.59  10�6

P � P1F3,20 � 19.602 � 3.59  10�6

 � 512.96 � 382.79 � 130.17
 SSE � SST � SSTreatments

 �
16022 � 19422 � 110222 � 112722

6
�
138322

24
� 382.79

 SSTreatments � a
4

i�1
 
y2

i .
n �

y2..

N

 � 1722 � 1822 � p � 12022 �
138322

24
� 512.96

 SST � a
4

i�1
 a

6

j�1
 y2

ij �
y..2

N

 H1: �i 	 0 for at least one i

 H0: �1 � �2 � �3 � �4 � 0

Table 13-4 ANOVA for the Tensile Strength Data

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value

Hardwood
concentration 382.79 3 127.60 19.60 3.59 E-6
Error 130.17 20 6.51
Total 512.96 23
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 477

The Minitab output also presents 95% confidence intervals on each individual treatment
mean. The mean of the ith treatment is defined as

A point estimator of �i is . Now, if we assume that the errors are normally distributed,
each treatment average is normally distributed with mean �i and variance �2�n. Thus, if �2

were known, we could use the normal distribution to construct a CI. Using MSE as an estima-
tor of �2 (The square root of MSE is the “Pooled StDev” referred to in the Minitab output), we
would base the CI on the t-distribution, since

has a t-distribution with a(n � 1) degrees of freedom. This leads to the following definition 
of the confidence interval.

T �
Yi. � �i1MSE
n

�̂i � Yi.

�i � � � �i  i � 1, 2, p , a

Table 13-5 Minitab Analysis of Variance Output for Example 13-1

One-Way ANOVA: Strength versus CONC

Analysis of Variance for Strength

Source DF SS MS F P
Conc 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96 Individual 95% CIs For Mean

Based on Pooled StDev
Level N Mean StDev —- � ——- � ——- � ——- ��

5 6 10.000 2.828 (— —)
10 6 15.667 2.805 (— —)
15 6 17.000 1.789 (— —)
20 6 21.167 2.639 (— —)

—- � ———- � ———- � ———- � -
Pooled StDev � 2.551 10.0 15.0 20.0 25.0

Fisher’s pairwise comparisons

Family error rate � 0.192
Individual error rate � 0.0500

Critical value � 2.086

Intervals for (column level mean) � (row level mean)
5 10 15

10 �8.739
�2.594

15 �10.072 �4.406
�3.928 1.739

20 �14.239 �8.572 �7.239
�8.094 �2.428 �1.094

*
*

*
*
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478 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

A 95% CI on the difference in means �3 � �2 is computed from Equation 13-12 as follows:

or

�1.74 � �3 � �2 � 4.40

317.00 � 15.67 � 12.0862 ˛1216.512
6 4
3y3. � y2. � t0.025,20 12MSE
n 4

A 100(1 � �) percent confidence interval on the difference in two treatment means
�i � �j is

(13-12)

yi. � yj. � t�
2,a1n�12 B2MSE

n � �i � �j � yi. � yj. � t�
 2,a1n�12 B2MSE

n

Definition

Equation 13-11 is used to calculate the 95% CIs shown graphically in the Minitab output of
Table 13-5. For example, at 20% hardwood the point estimate of the mean is ,
MSE � 6.51, and t0.025,20 � 2.086, so the 95% CI is

or

It can also be interesting to find confidence intervals on the difference in two treatment means,
say, �i � �j. The point estimator of �i � �j is , and the variance of this estimator is

Now if we use MSE to estimate �2,

has a t-distribution with a(n � 1) degrees of freedom. Therefore, a CI on �i � �j may be
based on the t-distribution.

T �
Yi. � Yj. � 1�i � �j212MSE
n

V1Yi. � Yj.2 �
�2

n �
�2

n �
2�2

n

Yi. � Yj.

19.00 psi � �4 � 23.34 psi

321.167 � 12.0862 ˛16.51
6 4
3y4. � t0.025,20˛1MSE
n 4

y4. � 21.167

A 100(1 � �) percent confidence interval on the mean of the ith treatment �i is

(13-11)yi. � t�
 2,a 1n�12 BMSE

n � �i � yi. � t�
2,a1n�12 BMSE

n

Definition
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 479

Since the CI includes zero, we would conclude that there is no difference in mean tensile
strength at these two particular hardwood levels.

The bottom portion of the computer output in Table 13-5 provides additional information con-
cerning which specific means are different. We will discuss this in more detail in Section 13-2.3.

An Unbalanced Experiment
In some single-factor experiments, the number of observations taken under each treatment
may be different. We then say that the design is unbalanced. In this situation, slight
modifications must be made in the sums of squares formulas. Let ni observations be taken
under treatment i (i � 1, 2, . . . , a), and let the total number of observations The
computational formulas for SST and SSTreatments are as shown in the following definition.

N � g a
i�1 ni.

Choosing a balanced design has two important advantages. First, the ANOVA is relatively
insensitive to small departures from the assumption of equality of variances if the sample sizes
are equal. This is not the case for unequal sample sizes. Second, the power of the test is max-
imized if the samples are of equal size.

13-2.3 Multiple Comparisons Following the ANOVA

When the null hypothesis is rejected in the ANOVA, we know
that some of the treatment or factor level means are different. However, the ANOVA doesn’t
identify which means are different. Methods for investigating this issue are called multiple
comparisons methods. Many of these procedures are available. Here we describe a very
simple one, Fisher’s least significant difference (LSD) method. In Section 13-2.4 on the 
CD, we describe three other procedures. Montgomery (2001) presents these and other methods
and provides a comparative discussion.

The Fisher LSD method compares all pairs of means with the null hypotheses H0: �i � �j

(for all i 	 j) using the t-statistic

Assuming a two-sided alternative hypothesis, the pair of means �i and �j would be declared
significantly different if

0 yi. � yj. 0 � LSD

t0 �
yi. � yj.B2MSE

n

H0: �1 � �2 � p � �a � 0

The sums of squares computing formulas for the ANOVA with unequal sample sizes
ni in each treatment are

(13-13)

(13-14)

and

(13-15) SSE � SST � SSTreatments

 SS
 Treatments � a

a

i�1
 
y2

i .
ni

�
y2..

N

 SST � a
a

i�1
 a

ni

j�1
 y2

ij �
y2..

N

Definition
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where LSD, the least significant difference, is

Figure 13-2 Results of Fisher’s LSD method in Example 13-2.

(13-16)LSD � t�
2,a 1n�12 B2MSE

n

If the sample sizes are different in each treatment, the LSD is defined as

EXAMPLE 13-2 We will apply the Fisher LSD method to the hardwood concentration experiment. There are
a � 4 means, n � 6, MSE � 6.51, and t0.025,20 � 2.086. The treatment means are

The value of LSD is . Therefore, any
pair of treatment averages that differs by more than 3.07 implies that the corresponding pair
of treatment means are different.

The comparisons among the observed treatment averages are as follows:

From this analysis, we see that there are significant differences between all pairs of means
except 2 and 3. This implies that 10 and 15% hardwood concentration produce approximately
the same tensile strength and that all other concentration levels tested produce different tensile
strengths. It is often helpful to draw a graph of the treatment means, such as in Fig. 13-2, with
the means that are not different underlined. This graph clearly reveals the results of the exper-
iment and shows that 20% hardwood produces the maximum tensile strength.

The Minitab output in Table 13-5 shows the Fisher LSD method under the heading
“Fisher’s pairwise comparisons.” The critical value reported is actually the value of t0.025,20 �

2 vs. 1 � 15.67 � 10.00 �   5.67 � 3.07

3 vs. 2 � 17.00 � 15.67 �   1.33 � 3.07

3 vs. 1 � 17.00 � 10.00 �   7.00 � 3.07

4 vs. 3 � 21.17 � 17.00 �   4.17 � 3.07

4 vs. 2 � 21.17 � 15.67 �   5.50 � 3.07

4 vs. 1 � 21.17 � 10.00 � 11.17 � 3.07

LSD � t0.025,2012MSE 
n � 2.08612 16.512 
6 � 3.07

y4. � 21.17 psi

y3. � 17.00 psi

y2. � 15.67 psi

y1. � 10.00 psi

LSD � t�
2,N�a BMSE 
a 1

ni
�

1
nj
b
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2.086. Minitab implements Fisher’s LSD method by computing confidence intervals on all
pairs of treatment means using Equation 13-12. The lower and upper 95% confidence limits
are shown at the bottom of the table. Notice that the only pair of means for which the
confidence interval includes zero is for �10 and �15. This implies that �10 and �15 are not
significantly different, the same result found in Example 13-2.

Table 13-5 also provides a “family error rate,” equal to 0.192 in this example. When all
possible pairs of means are tested, the probability of at least one type I error can be much
greater than for a single test. We can interpret the family error rate as follows. The probability
is 1 � 0.192 � 0.808 that there are no type I errors in the six comparisons. The family error
rate in Table 13-5 is based on the distribution of the range of the sample means. See
Montgomery (2001) for details. Alternatively, Minitab permits you to specify a family error
rate and will then calculate an individual error rate for each comparison.

13-2.4 More About Multiple Comparisons (CD Only)

13-2.5 Residual Analysis and Model Checking

The analysis of variance assumes that the observations are normally and independently dis-
tributed with the same variance for each treatment or factor level. These assumptions should
be checked by examining the residuals. A residual is the difference between an observation yij

and its estimated (or fitted) value from the statistical model being studied, denoted as . For
the completely randomized design and each residual is , that is, the dif-
ference between an observation and the corresponding observed treatment mean. The residuals
for the paper tensile strength experiment are shown in Table 13-6. Using to calculate each
residual essentially removes the effect of hardwood concentration from the data; consequently,
the residuals contain information about unexplained variability.

The normality assumption can be checked by constructing a normal probability plot of
the residuals. To check the assumption of equal variances at each factor level, plot the residu-
als against the factor levels and compare the spread in the residuals. It is also useful to plot the
residuals against (sometimes called the fitted value); the variability in the residuals should
not depend in any way on the value of . Most statistics software packages will construct
these plots on request. When a pattern appears in these plots, it usually suggests the need for
a transformation, that is, analyzing the data in a different metric. For example, if the variabil-
ity in the residuals increases with , a transformation such as log y or should be consid-
ered. In some problems, the dependency of residual scatter on the observed mean is very
important information. It may be desirable to select the factor level that results in maximum
response; however, this level may also cause more variation in response from run to run.

The independence assumption can be checked by plotting the residuals against the time
or run order in which the experiment was performed. A pattern in this plot, such as sequences
of positive and negative residuals, may indicate that the observations are not independent.

yi.
1yyi.

yi

yi.

yi.

eij � yij � yi.ŷij � yi.
ŷij
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Table 13-6 Residuals for the Tensile Strength Experiment

Hardwood
Concentration (%) Residuals

5 �3.00 �2.00 5.00 1.00 �1.00 0.00
10 �3.67 1.33 �2.67 2.33 3.33 �0.67
15 �3.00 1.00 2.00 0.00 �1.00 1.00
20 �2.17 3.83 0.83 1.83 �3.17 �1.17
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This suggests that time or run order is important or that variables that change over time are
important and have not been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is
shown in Fig. 13-3. Figures 13-4 and 13-5 present the residuals plotted against the factor
levels and the fitted value respectively. These plots do not reveal any model inadequacy or
unusual problem with the assumptions.

13-2.6 Determining Sample Size

In any experimental design problem, the choice of the sample size or number of replicates to
use is important. Operating characteristic curves can be used to provide guidance in mak-
ing this selection. Recall that the operating characteristic curve is a plot of the probability of a

yi.
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Figure 13-3 Normal probability plot of residuals from
the hardwood concentration experiment.
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type II error (�) for various sample sizes against a measure of the difference in means that it
is important to detect. Thus, if the experimenter knows the magnitude of the difference in
means that is of potential importance, the operating characteristic curves can be used to deter-
mine how many replicates are required to achieve adequate sensitivity.

The power of the ANOVA test is

(13-17)

To evaluate this probability statement, we need to know the distribution of the test statistic F0

if the null hypothesis is false. It can be shown that, if H0 is false, the statistic F0 �
MSTreatments�MSE is distributed as a noncentral F random variable, with a � 1 and a(n � 1)
degrees of freedom and a noncentrality parameter �. If � � 0, the noncentral F-distribution
becomes the usual or central F-distribution.

Operating characteristic curves are used to evaluate � defined in Equation 13-17. These
curves plot � against a parameter �, where

(13-18)

The parameter �2 is (apart from n) the noncentrality parameter �. Curves are available for 
� � 0.05 and � � 0.01 and for several values of the number of degrees of freedom for nu-
merator (denoted v1) and denominator (denoted v2). Figure 13-6 gives representative O.C.
curves, one for  a � 4 (v1 � 3) and one for a � 5 (v1 � 4) treatments. Notice that for each
value of a there are curves for � � 0.05 and � � 0.01. O.C. curves for other values of a are
in Section 13-2.7 on the CD.

In using the operating curves, we must define the difference in means that we wish to
detect in terms of . Also, the error variance �2 is usually unknown. In such cases, we
must choose ratios of that we wish to detect. Alternatively, if an estimate of �2

is available, one may replace �2 with this estimate. For example, if we were interested in
the sensitivity of an experiment that has already been performed, we might use MSE as the
estimate of �2.

EXAMPLE 13-3 Suppose that five means are being compared in a completely randomized experiment with 
� � 0.01. The experimenter would like to know how many replicates to run if it is impor-
tant to reject H0 with probability at least 0.90 if . The parameter �2 is, in
this case,

and for the operating characteristic curve with v1 � a � 1 � 5 � 1 � 4, and v2 � a(n � 1) �
5(n � 1) error degrees of freedom refer to the lower curve in Figure 13-6. As a first guess, try
n � 4 replicates. This yields �2 � 4, � � 2, and v2 � 5(3) � 15 error degrees of freedom.
Consequently, from Figure 13-6, we find that � � 0.38. Therefore, the power of the test is
approximately 1 � � � 1 � 0.38 � 0.62, which is less than the required 0.90, and so we

�2 �

na
a

i�1
�2

i

a�2 �
n
5

 152 � n

g 5
i�1 �

2
i 
�2 � 5.0

g a
i�1 �

2
i 
�2

g a
i�1 �

2
i

�2 �

na
a

i�1
 �

2
i

a�2

 � P5F0 � f�,a�1, a 1n�12   0   
 H0 is false6

 1 � � � P5Reject H0 
  
0

  
 H0 is false6
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Figure 13-6 Two Operating characteristic curves for the fixed-effects model analysis of variance.
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conclude that n � 4 replicates is not sufficient. Proceeding in a similar manner, we can con-
struct the following table:

n �2 � a(n � 1) � Power � (1 � �)

4 4 2.00 15 0.38 0.62
5 5 2.24 20 0.18 0.82
6 6 2.45 25 0.06 0.94

13-1. In Design and Analysis of Experiments, 5th edition
(John Wiley & Sons, 2001) D. C. Montgomery describes an
experiment in which the tensile strength of a synthetic fiber is
of interest to the manufacturer. It is suspected that strength is
related to the percentage of cotton in the fiber. Five levels of
cotton percentage are used, and five replicates are run in
random order, resulting in the data below.

Cotton
Percentage

Observations

1 2 3 4 5

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

Observations

1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8

160 4.9 4.6 5.0 4.2 3.6 4.2

200 4.6 3.4 2.9 3.5 4.1 5.1

C2F6 Flow
(SCCM)

(a) Does C2F6 flow rate affect etch uniformity? Construct box
plots to compare the factor levels and perform the analysis
of variance. Use � � 0.05.

(b) Do the residuals indicate any problems with the underly-
ing assumptions?

13-3. The compressive strength of concrete is being stud-
ied, and four different mixing techniques are being investi-
gated. The following data have been collected.

(a) Test the hypothesis that mixing techniques affect the
strength of the concrete. Use � � 0.05.

(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from this experiment.

13-4. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. The experiment led to the following data.

(a) Does cotton percentage affect breaking strength? Draw
comparative box plots and perform an analysis of vari-
ance. Use � � 0.05.

(b) Plot average tensile strength against cotton percentage
and interpret the results.

(c) Analyze the residuals and comment on model adequacy.

13-2. In “Orthogonal Design for Process Optimization and Its
Application to Plasma Etching” (Solid State Technology, May
1987), G. Z. Yin and D. W. Jillie describe an experiment to de-
termine the effect of C2F6 flow rate on the uniformity of the etch
on a silicon wafer used in integrated circuit manufacturing.
Three flow rates are used in the experiment, and the resulting
uniformity (in percent) for six replicates is shown below.

13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 485

Thus, at least n � 6 replicates must be run in order to obtain a test with the required power.

13-2.7 Technical Details about the Analysis of Variance (CD Only)

EXERCISES FOR SECTION 13-2

Mixing
Technique Compressive Strength (psi)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

(a) Does the firing temperature affect the density of the
bricks? Use � � 0.05.

(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from the experiment.

Temperature
(°F) Density

100 21.8 21.9 21.7 21.6 21.7 21.5 21.8

125 21.7 21.4 21.5 21.5 — — —

150 21.9 21.8 21.8 21.6 21.5 — —

175 21.9 21.7 21.8 21.7 21.6 21.8 —
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13-5. An electronics engineer is interested in the effect on
tube conductivity of five different types of coating for cathode
ray tubes in a telecommunications system display device. The
following conductivity data are obtained.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment. What con-

clusions can you draw about the underlying model
assumptions?

13-8. An article in Environment International (Vol. 18,
No. 4, 1992) describes an experiment in which the amount of
radon released in showers was investigated. Radon-enriched
water was used in the experiment, and six different orifice
diameters were tested in shower heads. The data from the
experiment are shown in the following table.

(a) Using � � 0.01, test the hypothesis that the three circuit
types have the same response time.

(b) Analyze the residuals from this experiment.
(c) Find a 95% confidence interval on the response time for

circuit three.

13-7. An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213–216) describes several experiments investi-
gating the rodding of concrete to remove entrapped air. A 
3-inch  6-inch cylinder was used, and the number of times
this rod was used is the design variable. The resulting com-
pressive strength of the concrete specimen is the response.
The data are shown in the following table.

(a) Does the size of the orifice affect the mean percentage of
radon released? Use � � 0.05.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on the mean percent of

radon released when the orifice diameter is 1.40.

13-9. A paper in the Journal of the Association of Asphalt
Paving Technologists (Vol. 59, 1990) describes an experi-
ment to determine the effect of air voids on percentage
retained strength of asphalt. For purposes of the experiment,
air voids are controlled at three levels; low (2–4%), medium
(4–6%), and high (6–8%). The data are shown in the follow-
ing table.

Coating
Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 133 132 127

4 129 127 132 129

5 147 148 144 142

Circuit
Type Response

1 19 22 20 18 25

2 20 21 33 27 40

3 16 15 18 26 17

Rodding
Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

Orifice
Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

Air Voids Retained Strength (%)

Low 106 90 103 90 79 88 92 95

Medium 80 69 94 91 70 83 87 83

High 78 80 62 69 76 85 69 85

(a) Is there any difference in conductivity due to coating
type? Use � � 0.01.

(b) Analyze the residuals from this experiment.
(c) Construct a 95% interval estimate of the coating type 1

mean. Construct a 99% interval estimate of the mean dif-
ference between coating types 1 and 4.

13-6. The response time in milliseconds was determined for
three different types of circuits in an electronic calculator. The
results are recorded here.

(a) Is there any difference in compressive strength due to the
rodding level?

(a) Do the different levels of air voids significantly affect
mean retained strength? Use � � 0.01.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on mean retained strength

where there is a high level of air voids.

(e) Find a 95% confidence interval on the difference
in mean retained strength at the low and high levels of
air voids.

13-10. An article in the Materials Research Bulletin (Vol. 26,
No. 11, 1991) investigated four different methods of preparing
the superconducting compound PbMo6S8. The authors contend
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Preparation
Method Transition Temperature Tc(�K)

1 14.8 14.8 14.7 14.8 14.9

2 14.6 15.0 14.9 14.8 14.7

3 12.7 11.6 12.4 12.7 12.1

4 14.2 14.4 14.4 12.2 11.7

that the presence of oxygen during the preparation process
affects the material’s superconducting transition temperature Tc.
Preparation methods 1 and 2 use techniques that are designed to
eliminate the presence of oxygen, while methods 3 and 4 allow
oxygen to be present. Five observations on Tc (in °K) were made
for each method, and the results are as follows:

13-13. Use Fisher’s LSD method with � � 0.05 to analyze
the mean compressive strength of the four mixing techniques
in Exercise 13-3.

13-14. Use Fisher’s LSD method to analyze the five means
for the coating types described in Exercise 13-5. Use � � 0.01.

13-15. Use Fisher’s LSD method to analyze the mean
response times for the three circuits described in Exercise 
13-6. Use � � 0.01.

13-16. Use Fisher’s LSD method to analyze the mean
amounts of radon released in the experiment described in
Exercise 13-8. Use � � 0.05.

13-17. Apply Fisher’s LSD method to the air void experi-
ment described in Exercise 13-9. Using � � 0.05, which
treatment means are different?

13-18. Apply Fisher’s LSD method to the superconducting
material experiment described in Exercise 13-10. Which
preparation methods differ, if � � 0.05?

13-19. Suppose that four normal populations have common
variance �2 � 25 and means �1 � 50, �2 � 60, �3 � 50, and
�4 � 60. How many observations should be taken on each
population so that the probability of rejecting the hypothesis
of equality of means is at least 0.90? Use � � 0.05.

13-20. Suppose that five normal populations have common
variance �2 � 100 and means �1 � 175, �2 � 190, �3 � 160,
�4 � 200, and �5 � 215. How many observations per popula-
tion must be taken so that the probability of rejecting the
hypothesis of equality of means is at least 0.95? Use � � 0.01.

(a) Is there evidence to support the claim that the presence of
oxygen during preparation affects the mean transition
temperature? Use � � 0.05.

(b) What is the P-value for the F-test in part (a)?
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on mean Tc when method

1 is used to prepare the material.

13-11. Use Fisher’s LSD method with � � 0.05 to analyze
the means of the five different levels of cotton content in
Exercise 13-1.

13-12. Use Fisher’s LSD method with � � 0.05 test to
analyze the means of the three flow rates in Exercise 13-2.

13-3 THE RANDOM-EFFECTS MODEL 487

13-3 THE RANDOM-EFFECTS MODEL

13-3.1 Fixed versus Random Factors

In many situations, the factor of interest has a large number of possible levels. The analyst is
interested in drawing conclusions about the entire population of factor levels. If the experimenter
randomly selects a of these levels from the population of factor levels, we say that the factor is a
random factor. Because the levels of the factor actually used in the experiment were chosen ran-
domly, the conclusions reached will be valid for the entire population of factor levels. We will
assume that the population of factor levels is either of infinite size or is large enough to be con-
sidered infinite. Notice that this is a very different situation than we encountered in the fixed
effects case, where the conclusions apply only for the factor levels used in the experiment.

13-3.2 ANOVA and Variance Components

The linear statistical model is

(13-19)

where the treatment effects �i and the errors �ij are independent random variables. Note that
the model is identical in structure to the fixed-effects case, but the parameters have a different

Yij � � � �i � �ij e i � 1, 2, p , a

j � 1, 2, p , n
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interpretation. If the variance of the treatment effects �i is by independence the variance of
the response is

The variances and �2 are called variance components, and the model, Equation 13-19, is
called the components of variance model or the random-effects model. To test hypotheses
in this model, we assume that the errors �ij are normally and independently distributed with
mean 0 and variance �2 and that the treatment effects �i are normally and independently dis-
tributed with mean zero and variance .*

For the random-effects model, testing the hypothesis that the individual treatment effects
are zero is meaningless. It is more appropriate to test hypotheses about . Specifically,

If � 0, all treatments are identical; but if � 0, there is variability between treatments.
The ANOVA decomposition of total variability is still valid; that is,

(13-20)

However, the expected values of the mean squares for treatments and error are somewhat
different than in the fixed-effect case.

SST � SSTreatments � SSE

�2
��2

�

H1: �
2
� � 0

H0: �
2
� � 0

�2
�

�2
�

�2
�

V1Yij2 � �2
� � �2

�2
�,

In the random-effects model for a single-factor, completely randomized experiment,
the expected mean square for treatments is

(13-21)

and the expected mean square for error is

(13-22) � �2

 E1MSE2 � E c SSE

a1n � 12 d

 � �2 � n�2
�

 E 1MS Treatments2 � E aSSTreatments

a � 1
b

*The assumption that the {�i} are independent random variables implies that the usual assumption of 
from the fixed-effects model does not apply to the random-effects model.

g a
i�1 �i � 0

From examining the expected mean squares, it is clear that both MSE and MSTreatments

estimate �2 when H0: � 0 is true. Furthermore, MSE and MSTreatments are independent.
Consequently, the ratio

(13-23)F0 �
MSTreatments

MSE

�2
�
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is an F random variable with a � 1 and a(n � 1) degrees of freedom when H0 is true. The null
hypothesis would be rejected at the �-level of significance if the computed value of the test
statistic f0 � f�,a�1,a(n�1).

The computational procedure and construction of the ANOVA table for the random-
effects model are identical to the fixed-effects case. The conclusions, however, are quite dif-
ferent because they apply to the entire population of treatments.

Usually, we also want to estimate the variance components (�2 and ) in the model. The
procedure that we will use to estimate �2 and is called the analysis of variance method
because it uses the information in the analysis of variance table. It does not require the nor-
mality assumption on the observations. The procedure consists of equating the expected mean
squares to their observed values in the ANOVA table and solving for the variance components.
When equating observed and expected mean squares in the one-way classification random-
effects model, we obtain

Therefore, the estimators of the variance components are

MS Treatments � �2 � n�2
� and MSE � �2

�2
�

�2
�

(13-24)

and

(13-25)�̂2
� �

MSTreatments � MSE

n

�̂2 � MSE

Sometimes the analysis of variance method produces a negative estimate of a variance
component. Since variance components are by definition nonnegative, a negative estimate of a
variance component is disturbing. One course of action is to accept the estimate and use it as
evidence that the true value of the variance component is zero, assuming that sampling variation
led to the negative estimate. While this approach has intuitive appeal, it will disturb the statisti-
cal properties of other estimates. Another alternative is to reestimate the negative variance com-
ponent with a method that always yields nonnegative estimates. Still another possibility is to
consider the negative estimate as evidence that the assumed linear model is incorrect, requiring
that a study of the model and its assumptions be made to find a more appropriate model.

EXAMPLE 13-4 In Design and Analysis of Experiments, 5th edition (John Wiley, 2001), D. C. Montgomery de-
scribes a single-factor experiment involving the random-effects model in which a textile man-
ufacturing company weaves a fabric on a large number of looms. The company is interested
in loom-to-loom variability in tensile strength. To investigate this variability, a manufacturing
engineer selects four looms at random and makes four strength determinations on fabric sam-
ples chosen at random from each loom. The data are shown in Table 13-7 and the ANOVA is
summarized in Table 13-8.

From the analysis of variance, we conclude that the looms in the plant differ significantly
in their ability to produce fabric of uniform strength. The variance components are estimated
by and

�̂2
� �

29.73 � 1.90
4

� 6.96

�̂2 � 1.90
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490 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Therefore, the variance of strength in the manufacturing process is estimated by

Most of this variability is attributable to differences between looms.

This example illustrates an important application of the analysis of variance—the iso-
lation of different sources of variability in a manufacturing process. Problems of excessive
variability in critical functional parameters or properties frequently arise in quality-
improvement programs. For example, in the previous fabric strength example, the process
mean is estimated by psi, and the process standard deviation is estimated by

� psi. If strength is approximately normally distributed, the
distribution of strength in the outgoing product would look like the normal distribution
shown in Fig. 13-7(a). If the lower specification limit (LSL) on strength is at 90 psi, a sub-
stantial proportion of the process output is fallout—that is, scrap or defective material that
must be sold as second quality, and so on. This fallout is directly related to the excess vari-
ability resulting from differences between looms. Variability in loom performance could be
caused by faulty setup, poor maintenance, inadequate supervision, poorly trained operators,
and so forth. The engineer or manager responsible for quality improvement must identify
and remove these sources of variability from the process. If this can be done, strength vari-
ability will be greatly reduced, perhaps as low as psi, as
shown in Fig. 13-7(b). In this improved process, reducing the variability in strength has
greatly reduced the fallout, resulting in lower cost, higher quality, a more satisfied cus-
tomer, and enhanced competitive position for the company.

13-3.3 Determining Sample Size in the Random Model (CD Only)

�̂Y � 2�̂2 � 21.90 � 1.38

18.86 � 2.98�̂y � 2V̂1Yij2
y � 95.45

V1Yij2 � �̂2
� � �̂2 � 6.96 � 1.90 � 8.86

Table 13-8 Analysis of Variance for the Strength Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-value

Looms 89.19 3 29.73 15.68 1.88 E-4
Error 22.75 12 1.90
Total 111.94 15

Table 13-7 Strength Data for Example 13-4

Observations

Loom 1 2 3 4 Total Average

1 98 97 99 96 390 97.5
2 91 90 93 92 366 91.5
3 96 95 97 95 383 95.8
4 95 96 99 98 388 97.0

1527 95.45

80 85 90 95 100 105 110    psi
LSL

(a)

Process
fallout

80 85 90 95 100 105 110     psi
LSL

(b)

Figure 13-7 The distribution of fabric strength. (a) Current process, (b) improved process.

I
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(a) Is there a difference in the wafer positions? Use � � 0.05.
(b) Estimate the variability due to wafer positions.
(c) Estimate the random error component.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-23. An article in the Journal of Quality Technology
(Vol. 13, No. 2, 1981, pp. 111–114) describes an experiment
that investigates the effects of four bleaching chemicals on
pulp brightness. These four chemicals were selected at ran-
dom from a large population of potential bleaching agents.
The data are as follows:

13-4 RANDOMIZED COMPLETE BLOCK DESIGN 491

13-21. A textile mill has a large number of looms. Each
loom is supposed to provide the same output of cloth per
minute. To investigate this assumption, five looms are chosen
at random, and their output is measured at different times. The
following data are obtained:

Loom Output (lb/min)

1 4.0 4.1 4.2 4.0 4.1

2 3.9 3.8 3.9 4.0 4.0

3 4.1 4.2 4.1 4.0 3.9

4 3.6 3.8 4.0 3.9 3.7

5 3.8 3.6 3.9 3.8 4.0

(a) Are the looms similar in output? Use � � 0.05.
(b) Estimate the variability between looms.
(c) Estimate the experimental error variance.
(d) Analyze the residuals from this experiment and check for

model adequacy.

13-22. An article in the Journal of the Electrochemical Society
(Vol. 139, No. 2, 1992, pp. 524–532) describes an experiment to
investigate the low-pressure vapor deposition of polysilicon. The
experiment was carried out in a large-capacity reactor at
Sematech in Austin, Texas. The reactor has several wafer posi-
tions, and four of these positions are selected at random. The
response variable is film thickness uniformity. Three replicates of
the experiment were run, and the data are as follows:

Water
Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

Chemical Pulp Brightness

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

(a) Is there a difference in the chemical types? Use � � 0.05.
(b) Estimate the variability due to chemical types.
(c) Estimate the variability due to random error.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-24. Consider the vapor-deposition experiment described
in Exercise 13-22.
(a) Estimate the total variability in the uniformity response.
(b) How much of the total variability in the uniformity

response is due to the difference between positions in the
reactor?

(c) To what level could the variability in the uniformity re-
sponse be reduced, if the position-to-position variability
in the reactor could be eliminated? Do you believe this is
a significant reduction?

13-4 RANDOMIZED COMPLETE BLOCK DESIGN

13-4.1 Design and Statistical Analysis

In many experimental design problems, it is necessary to design the experiment so that the
variability arising from a nuisance factor can be controlled. For example, consider the sit-
uation of Example 10-9, where two different methods were used to predict the shear
strength of steel plate girders. Because each girder has different strength (potentially), and
this variability in strength was not of direct interest, we designed the experiment by using
the two test methods on each girder and then comparing the average difference in strength
readings on each girder to zero using the paired t-test. The paired t-test is a procedure for
comparing two treatment means when all experimental runs cannot be made under

EXERCISES FOR SECTION 13-3
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homogeneous conditions. Alternatively, we can view the paired t-test as a method for re-
ducing the background noise in the experiment by blocking out a nuisance factor effect.
The block is the nuisance factor, and in this case, the nuisance factor is the actual experi-
mental unit—the steel girder specimens used in the experiment.

The randomized block design is an extension of the paired t-test to situations where
the factor of interest has more than two levels; that is, more than two treatments must be
compared. For example, suppose that three methods could be used to evaluate the strength
readings on steel plate girders. We may think of these as three treatments, say t1, t2, and t3.
If we use four girders as the experimental units, a randomized complete block design
would appear as shown in Fig. 13-8. The design is called a randomized complete block
design because each block is large enough to hold all the treatments and because the actual
assignment of each of the three treatments within each block is done randomly. Once the
experiment has been conducted, the data are recorded in a table, such as is shown in
Table 13-9. The observations in this table, say yij, represent the response obtained when
method i is used on girder j.

The general procedure for a randomized complete block design consists of selecting b
blocks and running a complete replicate of the experiment in each block. The data that re-
sult from running a randomized complete block design for investigating a single factor
with a levels and b blocks are shown in Table 13-10. There will be a observations (one per
factor level) in each block, and the order in which these observations are run is randomly
assigned within the block.

We will now describe the statistical analysis for a randomized complete block design.
Suppose that a single factor with a levels is of interest and that the experiment is run in b
blocks. The observations may be represented by the linear statistical model

(13-26)Yij � � � �i � �j � �ij 
e i � 1, 2, p , a

 j � 1, 2, p , b
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Block 1

t1

t2

t3

Block 2

t1

t2

t3

Block 3

t1

t2

t3

Block 4

t1

t2

t3

Figure 13-8 A randomized complete
block design.

Table 13-9 A Randomized Complete Block Design 

Block (Girder)

1 2 3 4

1 y11 y12 y13 y14

2 y21 y22 y23 y24

3 y31 y32 y33 y34

Treatments
(Method)

Table 13-10 A Randomized Complete Block Design with a Treatments and b Blocks

Blocks

Treatments 1 2 p b Totals Averages

1 y11 y12 p y1b

2 y21 y22 p y2b

a ya1 ya2 p yab ya.

Totals p y..
Averages p y..y.by.2y.1

y.by.2y.1

ya.
oooooo

y2.y2.
y1.y1.
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where � is an overall mean, �i is the effect of the ith treatment, �j is the effect of the jth
block, and �ij is the random error term, which is assumed to be normally and independently
distributed with mean zero and variance �2. Treatments and blocks will initially be consid-
ered as fixed factors. Furthermore, the treatment and block effects are defined as deviations
from the overall mean, so and . We also assume that treatments and
blocks do not interact. That is, the effect of treatment i is the same regardless of which block
(or blocks) it is tested in. We are interested in testing the equality of the treatment effects.
That is

Testing the hypothesis that all the treatment effects �i are equal to zero is equivalent to
testing the hypothesis that the treatment means are equal. To see this, note that the mean of the
ith treatment is �i, defined as

and since , we have the mean of the ith treatment defined as

Therefore, testing the hypothesis that the a treatment means are equal is equivalent to testing
that all the treatment effects �i are equal to zero.

The analysis of variance can be extended to the randomized complete block design. The
procedure uses a sum of squares identity that partitions the total sum of squares into three
components.

�i � � � �i, i � 1, 2, p , a

g b
j�1 �j � 0

 �
1

ba
b

j�1
 E1� � �i � �j2 � � � �i �

1

ba
b

j�1
 �j

 �i � E 

° a
b

j�1
 Yij

b

¢
�

1

ba
b

j�1
  
E1Yij2 �

1

ba
b

j�1
 E1� � �i � �j � �ij2

 H1: �i 	 0 at least one i

 H0: �1 � �2 � p � �a � 0

g b
j�1 �j � 0g a

i�1 �i � 0
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The sum of squares identity for the randomized complete block design is

(13-27)

or symbolically

SST � SSTreatments � SSBlocks � SSE

� a
a

i�1
a

b

j�1
 1 yij � y.j � yi. � y..22

a
a

i�1
a

b

j�1
 1 yij � y..22 � b a

a

i�1
 1 yi. � y..22 � a a

b

j�1
 1 y.j � y..22

Furthermore, the degrees of freedom corresponding to these sums of squares are

ab � 1 � 1a � 12 � 1b � 12 � 1a � 12 1b � 12
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For the randomized block design, the relevant mean squares are

The expected values of these mean squares can be shown to be as follows:

 MSE �
SSE1a � 12 1b � 12

 MSBlocks �
SSBlocks

b � 1

 MSTreatments �
SSTreatments

a � 1
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 E1MSE2 � �2

 E1MSBlocks2 � �2 �

aa
b

j�1
�2

j

b � 1

 E1MSTreatments2 � �2 �

ba
a

i�1
�2

i

a � 1

The computing formulas for the sums of squares in the analysis of variance for a ran-
domized complete block design are

(13-29)

(13-30)

(13-31)

and

(13-32)SSE � SST � SSTreatments � SSBlocks

 SSBlocks �
1
a  a

b

j�1
 y

2.j �
y2..

ab

 SSTreatments �
1

b
 a

a

i�1
 y

2
i . �

y2..

ab

 SST � a
a

i�1
a

b

j�1
 y

2
ij �

y2..

ab

Definition

Therefore, if the null hypothesis H0 is true so that all treatment effects �i � 0, MSTreatments is an
unbiased estimator of �2, while if H0 is false, MSTreatments overestimates �2. The mean square
for error is always an unbiased estimate of �2. To test the null hypothesis that the treatment ef-
fects are all zero, we use the ratio

(13-28)

which has an F-distribution with a � 1 and (a � 1)(b � 1) degrees of freedom if the null
hypothesis is true. We would reject the null hypothesis at the �-level of significance if the
computed value of the test statistic in Equation 13-28 is f0 � f�,a�1,(a�1)(b�1).

In practice, we compute SST, SSTreatments and SSBlocks and then obtain the error sum of
squares SSE by subtraction. The appropriate computing formulas are as follows.

F0 �
MSTreatments

MSE
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The computations are usually arranged in an ANOVA table, such as is shown in Table 13-11.
Generally, a computer software package will be used to perform the analysis of variance for
the randomized complete block design.

EXAMPLE 13-5 An experiment was performed to determine the effect of four different chemicals on the
strength of a fabric. These chemicals are used as part of the permanent press finishing
process. Five fabric samples were selected, and a randomized complete block design
was run by testing each chemical type once in random order on each fabric sample. The
data are shown in Table 13-12. We will test for differences in means using an ANOVA with
� � 0.01.

The sums of squares for the analysis of variance are computed as follows:

 �
15.722 � 18.822 � 16.922 � 117.822

5
�
139.222

20
� 18.04

 SSTreatments � a
4

i�1
 
y2

i.

b
�

y2..

ab

 � 11.322 � 11.622 � p � 13.422 �
139.222

20
� 25.69

 SST � a
4

i�1
a

5

j�1
 y

2
ij �

y2..

ab
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Table 13-11 ANOVA for a Randomized Complete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1

Blocks SSBlocks b � 1

Error SSE (by subtraction) (a � 1)(b � 1)

Total SST ab � 1

SSE1a � 12 1b � 12

SSBlocks

b � 1

MSTreatments

MSE

SSTreatments

a � 1

Table 13-12 Fabric Strength Data—Randomized Complete Block Design

Treatment Treatment
Fabric Sample Totals Averages

Chemical Type 1 2 3 4 5

1 1.3 1.6 0.5 1.2 1.1 5.7 1.14
2 2.2 2.4 0.4 2.0 1.8 8.8 1.76
3 1.8 1.7 0.6 1.5 1.3 6.9 1.38
4 3.9 4.4 2.0 4.1 3.4 17.8 3.56

Block totals 9.2 10.1 3.5 8.8 7.6 39.2(y..)
Block averages 2.30 2.53 0.88 2.20 1.90 1.96( )y..y.j

y.j

yi.yi.
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The ANOVA is summarized in Table 13-13. Since f0 � 75.13 � f0.01,3,12 � 5.95 (the P-value
is 4.79  10�8), we conclude that there is a significant difference in the chemical types so far
as their effect on strength is concerned.

When Is Blocking Necessary?
Suppose an experiment is conducted as a randomized block design, and blocking was not
really necessary. There are ab observations and (a � 1)(b � 1) degrees of freedom for error.
If the experiment had been run as a completely randomized single-factor design with b repli-
cates, we would have had a(b � 1) degrees of freedom for error. Therefore, blocking has cost
a(b � 1) � (a � 1)(b � 1) � b � 1 degrees of freedom for error. Thus, since the loss in
error degrees of freedom is usually small, if there is a reasonable chance that block effects may
be important, the experimenter should use the randomized block design.

For example, consider the experiment described in Example 13-5 as a single-factor experi-
ment with no blocking. We would then have 16 degrees of freedom for error. In the randomized
block design, there are 12 degrees of freedom for error. Therefore, blocking has cost only 4
degrees of freedom, which is a very small loss considering the possible gain in information that
would be achieved if block effects are really important. The block effect in Example 13-5 is
large, and if we had not blocked, SSBlocks would have been included in the error sum of squares
for the completely randomized analysis. This would have resulted in a much larger MSE, making
it more difficult to detect treatment differences. As a general rule, when in doubt as to the
importance of block effects, the experimenter should block and gamble that the block effect does
exist. If the experimenter is wrong, the slight loss in the degrees of freedom for error will have a
negligible effect, unless the number of degrees of freedom is very small.

Computer Solution
Table 13-14 presents the computer output from Minitab for the randomized complete block
design in Example 13-5. We used the analysis of variance menu for balanced designs to solve
this problem. The results agree closely with the hand calculations from Table 13-13. Notice
that Minitab computes an F-statistic for the blocks (the fabric samples). The validity of this ra-
tio as a test statistic for the null hypothesis of no block effects is doubtful because the blocks
represent a restriction on randomization; that is, we have only randomized within the
blocks. If the blocks are not chosen at random, or if they are not run in random order, the 

 � 25.69 � 6.69 � 18.04 � 0.96
 SSE � SST � SSBlocks � SSTreatments

 �
19.222 � 110.122 � 13.522 � 18.822 � 17.622

4
�
139.222

20
� 6.69

 SSBlocks � a
5

j�1
 
y.2j
a �

y2..

ab
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Table 13-13 Analysis of Variance for the Randomized Complete Block Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value

Chemical types 
(treatments) 18.04 3 6.01 75.13 4.79 E-8
Fabric samples 
(blocks) 6.69 4 1.67
Error 0.96 12 0.08
Total 25.69 19
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F-ratio for blocks may not provide reliable information about block effects. For more discus-
sion see Montgomery (2001, Chapter 4).

13-4.2 Multiple Comparisons

When the ANOVA indicates that a difference exists between the treatment means, we may
need to perform some follow-up tests to isolate the specific differences. Any multiple com-
parison method, such as Fisher’s LSD method, could be used for this purpose.

We will illustrate Fisher’s LSD method. The four chemical type averages from
Example 13-5 are:

Each treatment average uses b � 5 observations (one from each block). We will use � �
0.05, so t0.025,12 � 2.179. Therefore the value of the LSD is

Any pair of treatment averages that differ by 0.39 or more indicates that this pair of treatment
means is significantly different. The comparisons are shown below:

 3 vs. 1 � y3. � y1. � 1.38 � 1.14 � 0.24 � 0.39

 2 vs. 3 � y2. � y3. � 1.76 � 1.38 � 0.38 � 0.39

 2 vs. 1 � y2. � y1. � 1.76 � 1.14 � 0.62 � 0.39

 4 vs. 2 � y4. � y2. � 3.56 � 1.76 � 1.80 � 0.39

 4 vs. 3 � y4. � y3. � 3.56 � 1.38 � 2.18 � 0.39

 4 vs. 1 � y4. � y1. � 3.56 � 1.14 � 2.42 � 0.39

LSD � t0.025,12B2MSE

b
� 2.179B210.082

5
� 0.39

y1. � 1.14  y2. � 1.76  y3. � 1.38  y4. � 3.56
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Table 13-14 Minitab Analysis of Variance for the Randomized Complete 
Block Design in Example 13-5

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
Chemical fixed 4 1 2 3 4
Fabric S fixed 5 1 2 3 4 5

Analysis of Variance for strength

Source DF SS MS F P
Chemical 3 18.0440 6.0147 75.89 0.000
Fabric S 4 6.6930 1.6733 21.11 0.000
Error 12 0.9510 0.0792
Total 19 25.6880

F-test with denominator: Error
Denominator MS � 0.079250 with 12 degrees of freedom

Numerator DF MS F P
Chemical 3 6.015 75.89 0.000
Fabric S 4 1.673 21.11 0.000
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Figure 13-9 presents the results graphically. The underlined pairs of means are not different.
The LSD procedure indicates that chemical type 4 results in significantly different strengths
than the other three types do. Chemical types 2 and 3 do not differ, and types 1 and 3 do not
differ. There may be a small difference in strength between types 1 and 2.

13-4.3 Residual Analysis and Model Checking

In any designed experiment, it is always important to examine the residuals and to check for
violation of basic assumptions that could invalidate the results. As usual, the residuals for the
randomized complete block design are just the difference between the observed and estimated
(or fitted) values from the statistical model, say,

(13-33)

and the fitted values are

The fitted value represents the estimate of the mean response when the ith treatment is run in
the jth block. The residuals from the chemical type experiment are shown in Table 13-15.

Figures 13-10, 13-11, 13-12, and 13-13 present the important residual plots for the ex-
periment. These residual plots are usually constructed by computer software packages. There
is some indication that fabric sample (block) 3 has greater variability in strength when treated
with the four chemicals than the other samples. Chemical type 4, which provides the greatest
strength, also has somewhat more variability in strength. Followup experiments may be nec-
essary to confirm these findings, if they are potentially important.

13-4.4 Randomized Complete Block Design with Random Factors 
(CD Only) 

ŷij � yi. � y.j � y..

eij � yij � ŷij

0 1 2 3 4 6

2 41 3

5

Chemical type

Figure 13-9 Results of Fisher’s LSD method.

Table 13-15 Residuals from the Randomized Complete Block Design

Chemical Fabric Sample

Type 1 2 3 4 5

1 �0.18 �0.10 0.44 �0.18 0.02
2 0.10 0.08 �0.28 0.00 0.10
3 0.08 �0.24 0.30 �0.12 �0.02
4 0.00 0.28 �0.48 0.30 �0.10
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13-4 RANDOMIZED COMPLETE BLOCK DESIGN 499

13-25. In “The Effect of Nozzle Design on the Stability and
Performance of Turbulent Water Jets” (Fire Safety Journal,
Vol. 4, August 1981), C. Theobald describes an experiment in
which a shape measurement was determined for several differ-
ent nozzle types at different levels of jet efflux velocity.
Interest in this experiment focuses primarily on nozzle type,
and velocity is a nuisance factor. The data are as follows:

Jet Efflux Velocity (m/s)Nozzle
Type 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78

2 0.85 0.85 0.92 0.86 0.81 0.83

3 0.93 0.92 0.95 0.89 0.89 0.83

4 1.14 0.97 0.98 0.88 0.86 0.83

5 0.97 0.86 0.78 0.76 0.76 0.75

(a) Does nozzle type affect shape measurement? Compare the
nozzles with box plots and the analysis of variance.

(b) Use Fisher’s LSD method to determine specific differ-
ences between the nozzles. Does a graph of the average
(or standard deviation) of the shape measurements versus
nozzle type assist with the conclusions?

(c) Analyze the residuals from this experiment.

13-26. In Design and Analysis of Experiments, 5th edition
(John Wiley & Sons, 2001), D. C. Montgomery describes an
experiment that determined the effect of four different types
of tips in a hardness tester on the observed hardness of a
metal alloy. Four specimens of the alloy were obtained, and
each tip was tested once on each specimen, producing the
following data:

(a) Is there any difference in hardness measurements between
the tips?
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Figure 13-10 Normal probability plot of
residuals from the randomized complete
block design.
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Figure 13-11 Residuals by treatment.
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Figure 13-12 Residuals by block. Figure 13-13 Residuals versus .ŷij

EXERCISES FOR SECTION 13-4
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500 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

SpecimenType of 
Tip 1 2 3 4

1 9.3 9.4 9.6 10.0

2 9.4 9.3 9.8 9.9

3 9.2 9.4 9.5 9.7

4 9.7 9.6 10.0 10.2

(b) Use Fisher’s LSD method to investigate specific differ-
ences between the tips.

(c) Analyze the residuals from this experiment.

13-27. An article in the American Industrial Hygiene
Association Journal (Vol. 37, 1976, pp. 418–422) describes
a field test for detecting the presence of arsenic in urine sam-
ples. The test has been proposed for use among forestry
workers because of the increasing use of organic arsenics in
that industry. The experiment compared the test as per-
formed by both a trainee and an experienced trainer to an
analysis at a remote laboratory. Four subjects were selected
for testing and are considered as blocks. The response vari-
able is arsenic content (in ppm) in the subject’s urine. The
data are as follows:

Subject

Test 1 2 3 4

Trainee 0.05 0.05 0.04 0.15

Trainer 0.05 0.05 0.04 0.17

Lab 0.04 0.04 0.03 0.10

(a) Is there any difference in the arsenic test procedure?
(b) Analyze the residuals from this experiment.

13-28. An article in the Food Technology Journal (Vol. 10,
1956, pp. 39–42) describes a study on the protopectin content
of tomatoes during storage. Four storage times were selected,
and samples from nine lots of tomatoes were analyzed. The
protopectin content (expressed as hydrochloric acid soluble
fraction mg/kg) is in the following table.

(a) The researchers in this study hypothesized that mean pro-
topectin content would be different at different storage
times. Can you confirm this hypothesis with a statistical
test using � � 0.05?

(b) Find the P-value for the test in part (a).
(c) Which specific storage times are different? Would you

agree with the statement that protopectin content de-
creases as storage time increases?

(d) Analyze the residuals from this experiment.

13-29. An experiment was conducted to investigate leak-
ing current in a SOS MOSFETS device. The purpose of the
experiment was to investigate how leakage current varies as
the channel length changes. Four channel lengths were se-
lected. For each channel length, five different widths were
also used, and width is to be considered a nuisance factor.
The data are as follows:

WidthChannel 
Length 1 2 3 4 5

1 0.7 0.8 0.8 0.9 1.0

2 0.8 0.8 0.9 0.9 1.0

3 0.9 1.0 1.7 2.0 4.0

4 1.0 1.5 2.0 3.0 20.0

(a) Test the hypothesis that mean leakage voltage does not
depend on the channel length, using � � 0.05.

(b) Analyze the residuals from this experiment. Comment on
the residual plots.

13-30. Consider the leakage voltage experiment described
in Exercise 13-29. The observed leakage voltage for channel
length 4 and width 5 was erroneously recorded. The correct
observation is 4.0. Analyze the corrected data from this exper-
iment. Is there evidence to conclude that mean leakage voltage
increases with channel length?

Supplemental Exercises

13-31. An article in the IEEE Transactions on
Components, Hybrids, and Manufacturing Technology (Vol.
15, No. 2, 1992, pp. 146–153) describes an experiment in
which the contact resistance of a brake-only relay was studied

LotStorage 
Time 1 2 3 4 5 6 7 8 9

0 days 1694.0 989.0 917.3 346.1 1260.0 965.6 1123.0 1106.0 1116.0

7 days 1802.0 1074.0 278.8 1375.0 544.0 672.2 818.0 406.8 461.6

14 days 1568.0 646.2 1820.0 1150.0 983.7 395.3 422.3 420.0 409.5

21 days 415.5 845.4 377.6 279.4 447.8 272.1 394.1 356.4 351.2
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Method Score

1 24.4 23.2 25.0 19.7

22.2 24.4 23.8 18.0

2 22.1 19.5 17.3 19.7

22.3 23.2 21.4 22.6

3 23.3 22.8 22.4 23.7

20.4 23.5 20.8 24.1

13-4 RANDOMIZED COMPLETE BLOCK DESIGN 501

(a) Does the type of alloy affect mean contact resistance? Use
� � 0.01.

(b) Use Fisher’s LSD method to determine which means differ.
(c) Find a 99% confidence interval on the mean contact

resistance for alloy 3.
(d) Analyze the residuals for this experiment.

13-32. An article in Lubrication Engineering (December
1990) describes the results of an experiment designed to
investigate the effects of carbon material properties on
the progression of blisters on carbon face seals. The carbon
face seals are used extensively in equipment such as air
turbine starters. Five different carbon materials were tested,
and the surface roughness was measured. The data are as
follows:

Carbon 
Material 
Type Surface Roughness

EC10 0.50 0.55 0.55 0.36

EC10A 0.31 0.07 0.25 0.18 0.56 0.20

EC4 0.20 0.28 0.12

EC1 0.10 0.16

(a) Does carbon material type have an effect on mean surface
roughness? Use � � 0.05.

(b) Find the residuals for this experiment. Does a normal
probability plot of the residuals indicate any problem with
the normality assumption?

(c) Plot the residuals versus . Comment on the plot.
(d) Find a 95% confidence interval on the difference between

the mean surface roughness between the EC10 and the
EC1 carbon grades.

13-33. Apply the Fisher LSD method to the experiment in
Exercise 13-32. Summarize your conclusions regarding the
effect of material type on surface roughness.

13-34. An article in the Journal of Quality Technology
(Vol. 14, No. 2, 1982, pp. 80–89) describes an experiment in

ŷij

Alloy Contact Resistance

1 95 97 99 98 99

99 99 94 95 98

2 104 102 102 105 99

102 111 103 100 103

3 119 130 132 136 141

172 145 150 144 135

(a) Is there any difference in preparation methods? Use 
� � 0.05.

(b) Calculate the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment and comment

on model adequacy.
(d) Estimate the components of variance.

13-35. An article in the Journal of Agricultural
Engineering Research (Vol. 52, 1992, pp. 53–76) describes
an experiment to investigate the effect of drying temperature
of wheat grain on the baking quality of bread. Three temper-
ature levels were used, and the response variable measured
was the volume of the loaf of bread produced. The data are
as follows:

Temperature (°C) Volume (CC)

70.0 1245 1235 1285 1245 1235

75.0 1235 1240 1200 1220 1210

80.0 1225 1200 1170 1155 1095

(a) Does drying temperature affect mean bread volume? Use
� � 0.01.

(b) Find the P-value for this test.
(c) Use the Fisher’s LSD method to determine which means

are different.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-36. An article in Agricultural Engineering (December
1964, pp. 672–673) describes an experiment in which
the daily weight gain of swine is evaluated at different
levels of housing temperature. The mean weight of each
group of swine at the start of the experiment is considered to
be a nuisance factor. The data from this experiment are as
follows:

for three different materials (all were silver-based alloys).
The data are as follows.

which three different methods of preparing fish are evalu-
ated on the basis of sensory criteria and a quality score is
assigned. Assume that these methods have been randomly
selected from a large population of preparation methods.
The data are in the following table:
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Mean
Weight

(lbs)

502 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Housing Air Temperatures 
(degrees F) 

50 60 70 80 90 100

100 1.37 1.58 2.00 1.97 1.40 0.39

150 1.47 1.75 2.16 1.82 1.14 �0.19

200 1.19 1.91 2.22 1.67 0.88 �0.77

(a) Does housing air temperature affect mean weight gain?
Use � � 0.05.

(b) Use Fisher’s LSD method to determine which tempera-
ture levels are different.

(c) Analyze the residuals from this experiment and comment
on model adequacy.

13-37. An article in Communications of the ACM (Vol. 30,
No. 5, 1987) studied different algorithms for estimating
software development costs. Six algorithms were applied to
eight software development projects and the percent error in
estimating the development cost was observed. The data are in
the table at the bottom of the page.

(a) Do the algorithms differ in their mean cost estimation
accuracy? Use � � 0.05.

(b) Analyze the residuals from this experiment.
(c) Which algorithm would you recommend for use in

practice?

13-38. Consider an ANOVA situation with a � 4 means 
�1 � 1, �2 � 5, �3 � 8, and �4 � 4. Suppose that �2 � 4, 
n � 4, and � � 0.05.
(a) Find the power of the ANOVA F-test.
(b) How large would the sample size have to be if we want the

power of the F-test for detecting this difference in means
to be at least 0.90?

13-39. Consider an ANOVA situation with a � 5 treat-
ments. Let �2 � 9 and � � 0.05, and suppose that n � 4.
(a) Find the power of the ANOVA F-test when �1 � �2 �

�3 � 1, �4 � 3, and �5 � 2.
(b) What sample size is required if we want the power of the

F-test in this situation to be at least 0.90?

Project

Algorithm 1 2 3 4 5 6 7 8

1(SLIM) 1244 21 82 2221 905 839 527 122
2(COCOMO-A) 281 129 396 1306 336 910 473 199
3(COCOMO-R) 220 84 458 543 300 794 488 142
4(COCOMO-C) 225 83 425 552 291 826 509 153
5(FUNCTION POINTS) 19 11 �34 121 15 103 87 �17
6(ESTIMALS) �20 35 �53 170 104 199 142 41
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MIND-EXPANDING EXERCISES

13-40. Show that in the fixed-effects model analysis
of variance E(MSE) � �2. How would your develop-
ment change if the random-effects model had been
specified?

13-41. Consider testing the equality of the means of
two normal populations where the variances are
unknown but are assumed equal. The appropriate test
procedure is the two-sample t-test. Show that the two-
sample t-test is equivalent to the single-factor analysis of
variance F-test.

13-42. Consider the ANOVA with a � 2 treatments.
Show that the MSE in this analysis is equal to the
pooled variance estimate used in the two-sample 
t-test.

13-43. Show that the variance of the linear combina-
tion

13-44. In a fixed-effects model, suppose that there are
n observations for each of four treatments. Let Q2

1, Q
2
2,

and Q2
3 be single-degree-of-freedom sums of squares for

the orthogonal contrasts. Prove that SSTreatments � Q2
1 �

Q2
2 � Q2

3.

13-45. Consider the single-factor completely ran-
domized design with a treatments and n replicates.
Show that if the difference between any two treatment
means is as large as D, the minimum value that the OC
curve parameter �2 can take on is

13-46. Consider the single-factor completely ran-
domized design. Show that a 100(1 � �) percent confi-
dence interval for �2 is

where N is the total number of observations in the
experimental design.

13-47. Consider the random-effect model for the
single-factor completely randomized design. Show that

1N � a2MSE

�2
�
2, N�a

� �2 �
1N � a2MSE

�2
1��
2, N�a

�2 �
nD2

2a�2

a
a

i�1
ciYi. is �2a

a

i�1
nic

2
i .

a 100(1 � �)% confidence interval on the ratio of vari-
ance components �2

���2 is given by

where

and

13-48. Consider a random-effects model for the
single-factor completely randomized design. Show that
a 100(1 � �)% confidence interval on the ratio �2

� �
(�2 � �2

�) is

where L and U are as defined in Exercise 13-47.

13-49. Continuation of Exercise 13-48. Use the
results of Exercise 13-48 to find a 100(1 � �)% confi-
dence interval for �2�(�2 � �2

�).

13-50. Consider the fixed-effect model of the com-
pletely randomized single-factor design. The model
parameters are restricted by the constraint .
(Actually, other restrictions could be used, but this one is
simple and results in intuitively pleasing estimates for
the model parameters.) For the case of unequal sample
size n1, n2, p , na, the restriction is . Use
this to show that

Does this suggest that the null hypothesis in this model
is H0: n1�1 � n2�2 � p � na�a � 0?

13-51. Sample Size Determination. In the single-
factor completely randomized design, the accuracy of a

E1MSTreatments2 � �2 �
a

a

i�1
 ni�

2
i

a � 1

g a
i�1 ni�i � 0

g a
i�1 �i � 0

L

1 � L
�

�2
�

�2 � �2
�

�
U

1 � U

U �
1
n  cMSTreatments

MSE
 a 1

f1��
2,a�1,N�a
b � 1 d

L �
1
n  cMSTreatments

MSE
 a 1

f�
2,a�1,N�a
b � 1 d

L �
�2

�

�2 � U
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MIND-EXPANDING EXERCISES

100(1 � �)% confidence interval on the difference in
any two treatment means is 

(a) Show that if A is the desired accuracy of the interval,
the sample size required is 

n �
2F�
2,1,a1n�12 MSE

A2

t�
2,a1n�1212MSE
n.
(b) Suppose that in comparing a � 5 means we have a

preliminary estimate of �2 of 4. If we want the 95%
confidence interval on the difference in means to
have an accuracy of 2, how many replicates should
we use?

In the E-book, click on any
term or concept below to
go to that subject.

Analysis of variance
Blocking
Complete randomized

experiment
Expected mean squares

Fisher’s least significant
difference method

Fixed factor
Multiple comparisons
Nuisance factors
Random factor
Randomization

Randomized complete
block design

Residual analysis and
model adequacy
checking

Sample size and replica-
tion in an experiment

Variance component

CD MATERIAL
Graphical comparison

of means
Orthogonal contrasts
Tukey’s test

IMPORTANT TERMS AND CONCEPTS
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13-2.4 More About Multiple Comparisons 

As noted in the previous section, there are many ways to investigate the treatment means
following rejection of the null hypothesis with an ANOVA. The Fisher LSD method is easy
and very widely used. It is consider to be a very “liberal” procedure in that although each
test is at significance level �, the type I error for the entire set of comparisons (called the
experimentwise error rate) is much greater than �. In this section we briefly describe three
other approaches.

Graphical Comparison of Means
It is easy to compare treatment means graphically, following the analysis of variance. Suppose
that the factor has a levels and that are the observed averages for these factor
levels. Each treatment average has standard deviation , where � is the standard devia-
tion of an individual observation. If all treatment means are equal, the observed means 
would behave as if they were a set of observations drawn at random from a normal distribu-
tion with mean � and standard deviation .

Visualize this normal distribution capable of being slid along an axis below which the
treatment means are plotted. If all treatment means are equal, there should
be some position for this distribution that makes it obvious that the values were drawn
from the same distribution. If this is not the case, the values that do not appear to have
been drawn from this distribution are associated with treatments that produce different
mean responses.

The only flaw in this logic is that � is unknown. However, we can use from
the analysis of variance to estimate �. This implies that a t-distribution should be used
instead of the normal in making the plot, but since the t looks so much like the normal,
sketching a normal curve that is approximately units wide will usually work
very well.

Figure S13-1 shows this arrangement for the hardwood concentration experiment in
Example 13-1. The standard deviation of this normal distribution is

If we visualize sliding this distribution along the horizontal axis, we note that there is no lo-
cation for the distribution that would suggest that all four observations (the plotted means) are
typical, randomly selected values from that distribution. This, of course, should be expected,
because the analysis of variance has indicated that the means differ, and the display in 
Fig. S13-1 is just a graphical representation of the analysis of variance results. The figure does

1MSE�n � 16.51�6 � 1.04

61MSE�n

1MSE

yi.
yi.

y1., y2., p , ya.

��1n

yi.
��1n

y1., y2., p , ya.

0 5 10 15 20 25 30

σ /√n = 1.04

1 2 3 4

∧

Figure S13-1 Tensile strength averages from the hardwood concentration 
experiment in relation to a normal distribution with standard deviation

.1MSE�n � 16.51�6 � 1.04

13-1
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indicate that treatment 4 (20% hardwood) produces paper with higher mean tensile strength
than do the other treatments, and treatment 1 (5% hardwood) results in lower mean tensile
strength than do the other treatments. The means of treatments 2 and 3 (10 and 15% hard-
wood, respectively) do not differ.

This simple procedure is a rough but very effective multiple comparison technique. We
now briefly describe two other procedures: orthogonal contrasts and Tukey’s method.

Orthogonal Contrasts
Many multiple comparison procedures use the idea of a contrast. Consider the hardwood con-
centration experiment presented in Example 13-1. Since the hypothesis H0: �1 � �2 � �3 �
�4 � 0 was rejected, we know that some hardwood concentrations produce different tensile
strengths than others, but which ones actually cause this difference? At the outset of the
experiment, we might suspect that hardwood concentrations 3 and 4 produce the same tensile
strength. This implies that we would like to test the hypothesis

This hypothesis could be tested by using a linear combination of treatment totals, say,

If we had suspected that the average of hardwood concentrations 1 and 3 did not differ from
the average of hardwood concentrations 2 and 4, the hypothesis would have been

which implies using the linear combination of treatment totals

In general, the comparison of treatment means of interest will imply a linear combination
of treatment totals such as

with the restriction that These linear combinations are called contrasts. The sum
of squares for any contrast is

g a
i�1 ci � 0.

c � a
a

i�1
ciyi.

y1. � y3. 	 y2. 	 y4.

H1: �1 � �3 
 �2 � �4

H0: �1 � �3 � �2 � �4

y3. 	 y4.

H1: �3 
 �4

H0: �3 � �4

13-2

(S13-1)SSc �

aa
a

i�1
 
ci yi.b

2

na
a

i�1
 
c2

i
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and has a single degree of freedom. If the design is unbalanced, the comparison of treatment
means requires that and Equation S13-1 becomes

(S13-2)

A contrast is tested by comparing its sum of squares to the mean square error. The resulting
statistic is distributed as F, with 1 and N 	 a degrees of freedom.

A very important special case of the above procedure is that of orthogonal contrasts.
Two contrasts with coefficients and  are orthogonal if

or for an unbalanced design if

For a treatments a set of a 	 1 orthogonal contrasts will partition the sum of squares due to
treatments into a 	 1 independent single-degree-of-freedom sums of squares. Thus, tests
performed on orthogonal contrasts are independent.

There are many ways to choose the orthogonal contrast coefficients for a set of treat-
ments. Usually, something in the context of the experiment should suggest which comparisons
will be of interest. For example, if there are a � 3 treatments, with treatment 1 a control and
treatments 2 and 3 actual levels of the factor of interest to the experimenter, appropriate
orthogonal contrasts might be as follows:

Note that contrast 1 with ci � 	2, 1, 1 compares the average effect of the factor with the con-
trol, while contrast 2 with di � 0, 1, 	1 compares the two levels of the factor of interest.

Contrast coefficients must be chosen prior to running the experiment, because if these
comparisons are selected after examining the data, most experimenters would construct tests that
compare large observed differences in means. These large differences could be due to the presence
of real effects, or they could be due to random error. If experimenters always pick the largest dif-
ferences to compare, they will inflate the type I error of the test, since it is likely that in an unusu-
ally high percentage of the comparisons selected, the observed differences will be due to error.

EXAMPLE S13-1 Consider the hardwood concentration experiment. There are four levels of hardwood concen-
tration, and possible sets of comparisons between these means and the associated orthogonal
comparisons are

H0: �1 � �3 � �2 � �4  e � 	y1. � y2. 	 y3. � y4.

H0: �1 � �2 � �3 � �4  d � 	y1. 	 y2. � y3. � y4.

H0: �1 � �4 � �2 � �3  c � y1. 	 y2. 	 y3. � y4.

H0:    �2 	 �3 � 0

H0: 	2�1 � �2 � �3 � 0

a
a

i�1
 
nicidi � 0

a
a

i�1
 
cidi � 0

5di65ci6

SSc �

aa
a

i�1
ci yi.b

2

a
a

i�1
nic

2
i

g a
i�1 nici � 0,

13-3

PQ220 6234F.Ch 13_CD  5/8/02  7:54 PM  Page 3 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:PQ220 MONT 8/5/2002:Ch 13:



Notice that the contrast constants are orthogonal. Using the data from Table S13-1, we find the
numerical values of the contrasts and the sums of squares as follows:

These contrast sums of squares completely partition the treatment sum of squares; that is,
SSTreatments � SSc � SSd � SSe. These tests on the contrasts are usually incorporated in the
analysis of variance, such as is shown in Table S13-1. From this analysis, we conclude that
there are significant differences between hardwood concentration 3 and 4, and 1 and 2, but 
that the average of 1 and 4 does not differ from the average of 2 and 3. Also, the average of 1
and 3 differs from the average of 2 and 4.

Tukey’s Method
The Tukey procedure for comparing pairs of means makes use of the studentized range
statistic

where and are the largest and smallest sample means, respectively, out of a group
of  p sample means. For equal sample sizes, the Tukey procedure would indicate that the
two means �i and �j are different if the absolute value of the observed difference 
exceeds

where g�(a, f ) is the upper � percentage point of the studentized range statistic, a is the num-
ber of treatments, and f is the number of even degrees of freedom. Tables of g�(a, f ) are 

T� � g�1a, f 2BMSE

n

0  yi. 	 yj. 0
YminYmax

Q �
Ymax 	 Ymin1MSE�n

e � 	60 � 94 	 102 � 127 � 59  SSe �
15922
6142 � 145.04

d � 	60 	 94 � 102 � 127 � 75  SSd �
17522
6142 � 234.38

c � 60 	 94 	 102 � 127 � 	9   SSc �
1	922
6142 � 3.38

13-4

Table S13-1 Analysis of Variance for the Tensile Strength Data

Sum of Degrees of Mean
Source of Variation Squares Freedom Square f0

Hardwood concentration 382.79 3 127.60 19.61
c (1, 4 vs. 2, 3) 3.38 1 3.38 0.52
d (1, 2 vs. 3, 4) 234.38 1 234.38 36.00
e (1, 3 vs. 2, 4) 145.04 1 145.04 22.28

Error 130.17 20 6.51
Total 512.96 23
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13-5

Table S13-2 Minitab Output Illustrating Tukey’s Method

One-way ANOVA: Tensile Str versus Conc

Analysis of Variance for Tensile
Source DF SS MS F P
Conc 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+----------+----------+----------+-

5 6 10.000 2.828 (---*---)

10 6 15.667 2.805 (---*----)

15 6 17.000 1.789 (---*----)

20 6 21.167 2.639 (---*----)
-----+----------+----------+----------+-

Pooled StDev � 2.551 10.0 15.0 20.0 25.0

Tukey’s pairwise comparisons

Family error rate � 0.0500
Individual error rate � 0.0111

Critical value � 3.96

Intervals for (column level mean) 	 (row level mean)
5 10 15

10 	9.791
	1.542

15 	11.124 	5.458
	2.876 2.791

20 	15.291 	9.624 	8.291
	7.042 	1.376 	0.042

widely available; for example, see Montgomery (2001). Equivalently, we could construct a set
of 100(1 	 �)% confidence intervals for all pairs of mean using

For unequal sample sizes, use

The Tukey confidence intervals are a set of simultaneous confidence intervals that hold with prob-
ability 1 	 �. Tukey’s method is a very conservative procedure relative to Fisher’s LSD because 
it requires a larger observed difference in treatment averages to declair the pair of means different.

Minitab implements the Tukey procedure and reports the results in terms of the confi-
dence interval. Table S13-2 is the Minitab output for the hardwood concentration experiment
of Example S13-1. Notice that, like Fisher’s LSD, Tukey’s method indicates that all pairs of
means are different except at 10% and 15% concentrations.

T� �
g�1a, f 212

 BMSE 
 
a 1

ni
�

1
nj
b

yi. 	 yj. 	 T� � �i 	 �j � yi. 	 yj. � T�
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13-2.7 Technical Details about the Analysis of Variance (CD Only) 

Derivation of the ANOVA Identity
The proof of the fundamental ANOVA identity in Equation 13-5 is straightforward. Note that
we may write

or

Note that the cross-product term in the previous equation is zero, since

Therefore, we have shown that Equation 13-5 is correct.

Expected Mean Squares
In the text we state that

We can prove this directly by apply the expected value operator. Since

we will initially work with the treatment sum of squares. Now

and from the model Yij � � � �i � �ij we have

and

since . Substituting for and in the expression for SSTreatments yields

� E cn a
a

i�1
�2

i � n a
a

i�1
�2

i . � an�2.. � 2n a
a

i�1
�i�i. 	 2n�.. a

a

i�1
�i 	 2n�.. a

a

i�1
�i. d

E1SSTreatments2 � E cn a
a

i�1
1�i � �i. 	 �..22 d

Y..Yi.g a
i�1 

�i � 0

Y.. � � � �..

Yi. � � � �i � �i.

E1SSTreatments2 � E cn a
a

i�1
1Yi. 	 Y..22 d

MSTreatments �
SSTreatments

a 	 1

E1MSTreatments2 � �2 �

n a
a

i �1
 �

2
i

a 	 1

a
n

j�1
 1yij 	 yi.2 � yi. 	 nyi. � yi. 	 n1yi.�n2 � 0

 � 2 a
a

i�1
a

n

j�1
1 yi. 	 y..2 1 yij 	 yi.2

a
a

i�1
 a

n

j�1
1yij 	 y..22 � na

a

i�1
 1 yi. 	 y..22 � a

a

i�1
a

n

j�1
1 yij 	 yi.22

a
a

i�1
a

n

j�1
1 yij 	 y..22 � a

a

i�1
a

n

j�1
3 1 yi. 	 y..2 � 1yij 	 yi.2 42

13-6
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However, since the �ij’s are independent random variables with mean zero and variance �2, we
find that

Therefore

As a result,

Now if the null hypothesis of equal treatment means is true, each �i is equal to zero and

If the alternative hypothesis is true,

A similar approach will show that

so that

O.C. Curves
In the text, we give O.C. curves for the fixed effects ANOVA for the case of a � 4 and 
a � 5 treatments. A collection of additional curves for a � 2, 3, 6, 7, 8, and 9 are on pages
13-8 through 13-10. In using the curves, remember that v1 � the number of numerator
degrees of freedom and v2 � the number of denominator degrees of freedom. The sample
size calculation routine in Minitab will also determine sample sizes for the single-factor
ANOVA.

E1MSE2 � E  a SSE

a1n 	 12 b � �2

E1SSE2 � a1n 	 12�2

E  aSSTreatments

a 	 1
b � �2 �

n a
a

i�1
�2

i

a 	 1

E  aSSTreatments

a 	 1
b � �2

 � �2 �

n a
a

i�1
�2

i

a 	 1

 �
1

a 	 1
 E1SSTreatments2

E1MSTreatments2 � E  aSSTreatments

a 	 1
b

 � 1a 	 12�2 � n a
a

i�1
�2

i

E1SSTreatments2 � na
a

i�1
�2

i � a�2 	 �2

E1�2
i .2 �

�2

n , E1�2..2 �
�2

an, and E1�i.2 � 0

13-7
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13-8
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Source: These curves are adapted with permission from Biometrika Tables for Statisticians, Vol.
2, by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge, 1972.
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13-11

13-3.3 Determining Sample Size in the Random Model (CD Only)

The power of the test for the random-effects model is

It can be shown that if H1 is true (��
2  0) the power can be computed using the central F

distribution, with a 	 1 and a(n 	 1) degrees of freedom. In fact, the ratio

has the F-distribution with a 	 1 and a(n 	 1) degrees of freedom. Then,

(S13-3)

This probability statement may be easily evaluated using certain hand-held calculators, or it
may be evaluated using tables of the F-distribution.

EXAMPLE S13-2 Consider a completely randomized design with five treatments selected at random and six
observations per treatment. If � � 0.05, what is the power of the test if ��

2 � �2?
From Equation S13-3, we have the power as

since if ��
2 � �2 the ratio ��

2��2 � 1. Now f0.05,4,25 � 2.76, so

This probability was evaluated using a calculator that provided F-distribution probabilities.
Since the power of the test is 0.81, this implies that the null hypothesis H0: ��

2 � 0 will be
rejected with probability 0.81 in this experimental situation.

It is also possible to evaluate the power of the test using the operating characteristic
curves on page 13-12 through 13-15. These curves plot the probability of the type II error �
against �, where

(S13-4)� � B1 �
n�2

�

�2

 � P5F4,25  0.396 � 0.81

1 	 � � F eF4,25 
2.7631 � 6112 4 f � P eF4,25 

2.76
7
f

1 	 � � P eF4,25 
f0.05,4,25

31 � 6112 4 f

 � P eFa	1,a1n	12 
f�,a	1,a1n	12
11 � n�2

���22 f

 � P e MSTreatments

MSE 11 � n�2
���22 

f�,a	1,a 1n	12
11 � n�2

���22 f
1 	 � � P eMSTreatments

MSE
 f�,a	1,a 1n	12 0 �2

�  06

MSTreatments � 1�2 � n�2
� 2

MSE��2

 � P5F0  f�,a	1,a1n	12 0 �2
�  06

1 	 � � P5Reject H0 0H0 is false6
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Source: Reproduced with permission from Engineering Statistics, 2nd edition, by A. H. Bowker and G. J.
Lieberman, Prentice-Hall, Englewood Cliffs, N.J., 1972.
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13-16

In the randomized block design, replace n by b, the number of blocks. Since �2 is usually un-
known, we may either use a prior estimate or define the value of ��

2 that we are interested in
detecting in terms of the ratio ��

2��2.

EXAMPLE S13-3 Consider the situation described in Example S13-2. Since � � 0.05, a � 5, n � 6, and ��
2 �

�2, we may find � from Equation S13-4 as

From the operating characteristic curve with v1 � a 	 1 � 4, v2 � a(n 	 1) � 25 degrees
of freedom and � � 0.05, we find that

Therefore, the power is approximately 0.80. This agrees with the results obtained in 
Example S13-2.

13-4.4 Randomized Complete Block Design with Random Factors (CD Only)

In the preceding sections, we have assumed that the treatments and blocks are fixed factors. In
many randomized complete block designs, these assumptions may be too restrictive. For
example, in the chemical type experiment, Example 13-5, we might like to view the fabric
samples as a random sample of material to which the chemicals may be applied so that the
conclusions from the experiment will extend to the entire population of material.

It turns out that, if either treatments or blocks (or both) are random effects, the F-test in
the analysis of variance is still formed as

This can be shown by using the methods presented previously to evaluate the expected mean
squares. If the treatments are random, the treatment effects �i are considered to be normally
and independently distributed random variables with mean zero and variance ��

2. The null
hypothesis of zero treatment effects is

When both treatments and blocks are random, the block effects �j are also assumed to be
normally and independently distributed random variables with mean zero and variance �2

�. In
this case the expected values of the mean squares for treatments, blocks, and error are

The unbiased estimates of the variance components are

 �̂2
� �

MSBlocks 	 MSE

a

 �̂2
� �

MSTreatments 	 MSE

b

 �̂2 � MSE

E1MSE2 � �2

E1MSBlocks2 � �2 � a�2
�

E1MSTreatments2 � �2 � b�2
�

H1: �
2
�  0

H0: �
2
� � 0

F0 �
MSTreatments

MSE

� � 0.20

� � 11 � 6112 � 2.646

PQ220 6234F.Ch 13_CD  5/8/02  7:54 PM  Page 16 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:PQ220 MONT 8/5/2002:Ch 13:


	Main Navigation
	Preface
	Organization of the Book
	Using the Book
	Using the Computer
	Using the Web
	Acknowledgements

	Table of Contents
	Chapter 1 The Role of Statistics in Engineering
	1-1 The Engineering Method and statistical Thinking
	1-2 Collecting Engineering Data
	1-2.1 Basic Principles
	1-2.2 Retrospective Study
	1-2.3 Observational Study
	1-2.4 Designed Experiments
	1-2.5 A Factorial Experiment for the Connector Pull-off Force Problem (CD Only)
	1-2.6 Observing Processes Over Time

	1-3 Mechanistic and Empirical Models 
	1-4 Probability and Probability Models
	Important Terms and Concepts

	Chapter 2 Probability
	2-1 Sample Spaces And Events
	2-1.1 Random Experiments
	2-1.2 Sample Spaces
	2-1.3 Events
	2-1.4 Counting Techniques (CD only)
	2-1 Exercises

	2-2 Interpretations of Probability
	2-2.1 Introduction
	2-2.2 Axioms of Probability
	2-2 Exercises

	2-3  Addition Rules
	2-3 Exercises

	2-4 Conditional Probability
	2-4 Exercises

	2-5 Multiplication And Total Probability Rules
	2-5.1 Multiplication Rule
	2-5.2 Total Probability Rule
	2-5 Exercises

	2-6 Independence
	2-6 Exercises

	2-7 Bayes' Theorem
	2-7 Exercises

	2-8 Random Variables
	2-8 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 2-1
	Section 2-2
	Section 2-3
	Section 2-4
	Section 2-5
	Section 2-6
	Section 2-7
	Supplemental

	Chapter 2 Selected Problem Solutions

	Chapter 3 Discrete Random Variables and Probability Distributions
	3-1 Discrete Random Variables
	3-1 Exercises

	3-2 Probability Distributions and Probability Mass Functions
	3-2 Exercises

	3-3 Cumulative Distribution Functions
	3-3 Exercises

	3-4 Mean and Variance of a Discrete Random Variable
	3-4 Exercises

	3-5 Discrete Uniform Distribution
	3-5 Exercises

	3-6 Binomial Distribution
	3-6 Exercises

	3-7 Geometric and Negative Binomial Distributions
	3-7.1 Geometric Distribution
	3-7.2 Negative Binomial Distribution
	3-7 Exercises

	3-8 Hypergeometric Distribution
	3-8 Exercises

	3-9 Poisson Distribution
	3-9 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 3-1
	Section 3-2
	Section 3-3
	Section 3-4
	Section 3-5
	Section 3-6
	Section 3-7
	Section 3-8
	Section 3-9
	Supplemental

	Chapter3 Selected Problem Solutions

	Chapter 4 Continuous Random Variables and Probability Distributions
	4-1 Continuous Random Variables
	4-2 Probability Distributions and Probability Density  Functions
	4-2 Exercises

	4-3 Cumulative Distribution Functions
	4-3 Exercises

	4-4 Mean and Variance of a Continuous Random Variable
	4-4 Exercises

	4-5 Continuous Uniform Distribution
	4-5 Exercises

	4-6 Normal Distribution
	4-6 Exercises

	4-7 Normal Approximation to the Binomial and Poisson Distributions
	4-7 Exercises

	4-8 Continuity Corrections to Improve the Approximation (CD Only)
	4-8 Exercises

	4-9 Exponential Distribution
	4-9 Exercises

	4-10 Erlang and Gamma Distributions
	4-10.1 Erlang Distribution
	4-10.2 Gamma Distribution
	4-10 Exercises

	4-11 Weibull Distribution
	4-11 Exercises

	4-12 Lognormal Distribution
	4-12 Exercises

	Supplemental Exercises
	Important Terms  and Concepts
	Answers to Selected Exercises
	Section 4-2
	Section 4-3
	Section 4-4
	Section 4-5
	Section 4-6
	Section 4-7
	Section 4-9
	Section 4-10
	Section 4-11
	Section 4-12
	Supplemental

	Chapter 4 Selected Problem Solutions

	Chapter 5 Joint Probability Distributions
	5-1 Two Discrete Random Variables
	5-1.1 Joint Probability Distributions
	5-1.2 Marginal Probability Distributions
	5-1.3 Conditional Probability Distributions
	5-1.4 Independence
	5-1 Exercises

	5-2 Multiple Discrete Random Variables
	5-2.1 Joint Probability Distributions
	5-2.2 Multinomial Probability Distributions
	5-2 Exercises

	5-3 Two Continuous Random Variables
	5-3.1 Joint Probability Distributions
	5-3.2 Marginal Probability Distributions
	5-3.3 Conditional Probability Distributions
	5-3.4 Independence
	5-3 Exercises

	5-4 Multiple Continuous Random Variables
	5-4 Exercises

	5-5 Covariance And Correlation
	5-5 Exercises

	5-6 Bivariate Normal Distributions
	5-6 Exercises

	5-7 Linear Combinations of Random Variables
	5-7 Exercises

	5-8 Functions of Random Variables (CD Only)
	5-8 Exercises

	5-9 Moment Generating Function (CD Only)
	5-9 Exercises

	5-10 Chebyshev's Inequality (CD Only)
	5-10 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 5-1
	Section 5-2
	Section 5-3
	Section 5-4
	Section 5-5
	Section 5-6
	Section 5-7
	Supplemental

	Chapter 5 Selected Problem Solutions

	Chapter 6 Random Sampling and Data Description
	6-1 Data Summary and Display
	6-1 Exercises

	6-2 Random Sampling
	6-2 Exercises

	6-3 Stem-and-Leaf Diagrams
	6-3 Exercises

	6-4 Frequency Distributions and Histograms
	6-4 Exercises

	6-5 Box Plots
	6-5 Exercises

	6-6 Time Sequence Plots
	6-6 Exercises

	6-7 Probability Plots
	6-7 Exercises

	6-8 More About Probability Plotting (CD Only)
	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 6-1
	Section 6-3
	Section 6-5
	Supplemental

	Chapter 6 Selected Problem Solutions

	Chapter 7 Point Estimation of Parameters
	7-1 Introduction
	7-2 General Concepts of Point Estimation
	7-2.1 Unbiased Estimators
	7-2.2 Proof That S is a Biased Estimator of Sigma (CD Only)
	7-2.3 Variance of a Point Estimator
	7-2.4 Standard Error: Reporting a Point Estimate
	7-2.5 Bootstrap Estimate of the Standard Error (CD Only)
	7-2.6 Mean Square Error of an Estimator
	7-2 Exercises

	7-3 Methods of Point Estimation
	7-3.1 Method of Moments
	7-3.2 Method of Maximum Likelihood
	7-3.3 Bayesian Estimation of Parameters (CD Only)
	7-3.3 Exercises

	7-3 Exercises

	7-4 Sampling Distributions
	7-5 Sampling Distributions of Means
	7-5 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 7-2
	Section 7-3
	Section 7-5
	Supplemental

	Chapter 7 Selected Problem Solutions

	Chapter 8 Statistical Intervals for a Single Sample
	8-1 Introduction
	8-2 Confidence Interval on the Mean of a Normal Distribution, Variance Known
	8-2.1 Development of the Confidence Interval and its Basic Properties
	8-2.2 Choice of Sample Size
	8-2.3 One-Sided Confidence Bounds
	8-2.4 General Method to Derive a Confidence Interval 
	8-2.5 A Large-Sample Confidence Interval for Mu
	8-2.6 Bootstrap Confidence Intervals (CD Only)
	8-2 Exercises

	8-3 Confidence Interval on the Mean of a Normal Distribution, Variance Uknown
	8-3.1 The t-Distribution
	8-3.2 Development of the t-Distribution (CD Only)
	8-3.3 The t Confidence Interval on Mu
	8-3 Exercises

	8-4 Confidence Interval on the Variance and Standard Deviation of a Normal Population
	8-4 Exercises

	8-5 A Large-Sample Confidence Interval for a Population Proportion
	8-5 Exercises

	8-6 A Prediction Interval for a Future Observation
	8-6 Exercises

	8-7 Tolerance Intervals for a Normal Distribution
	8-7 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 8-2
	Section 8-3
	Section 8-4
	Section 8-5
	Section 8-6
	Section 8-7
	Supplemental

	Chapter 8 Selected Problem Solutions

	Chapter 9 Tests of Hypotheses for a Single Sample
	9-1 Hypothesis Testing
	9-1.1 Statistical Hypotheses
	9-1.2 Tests of Statistical Hypotheses
	9-1.3 One-Sided and Two-Sided Hypotheses
	9-1.4  General Procedure for Hypothesis Tests
	9-1 Exercises

	9-2 Tests on the Mean of a Normal Distribution, Variance Known
	9-2.1 Hypothesis Tests on the Mean
	9-2.2 P-Values in Hypothesis Tests
	9-2.3 Connection between Hypothesis Tests and Confidence Intervals
	9-2.4 Type II Error and Choice of Sample Size
	9-2.5 Large-Sample Tests
	9-2.6 Some Practical Comments on Hypothesis Tests
	9-2 Exercises

	9-3 Tests on the Mean of a Normal Distribution, Variance Unknown
	9-3.1 Hypothesis Tests on the Mean
	9-3.2 P-Value for a t-Test
	9-3.3 Choice of Sample Size
	9-3.4 Likelihood Ratio Approach to Development of Test Procedures (CD Only)
	9-3 Exercises

	9-4 Hypothesis Tests on the variance and standard Deviation of a Normal Population
	9-4.1 The Hypothesis Testing Procedures
	9-4.2 Beta-Error and Choice of Sample Size
	9-4 Exercises

	9-5 Tests on a Population Proportion
	9-5.1 Large-Sample Tests on a Proportion
	9-5.2 Small-Sample Tests on a Proportion (CD Only)
	9-5.3 Type II Error and Choice of Sample Size
	9-5 Exercises

	9-6 Summary Table of Inference Procedure for a Single Sample
	9-7 Testing for Goodness of Fit
	9-7 Exercises

	9-8 Contingency Table Tests
	9-8 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 9-1
	Section 9-2
	Section 9-3
	Section 9-4
	Section 9-5
	Section 9-7
	Section 9-8
	Supplemental

	Chapter 9 Selected Problem Solutions

	Chapter 10 Statistical Inference for Two Samples
	10-1 Introduction
	10-2 Inference for a Difference in Means of Two Normal Distributions, Variances Known
	10-2.1 Hypothesis Tests for a Difference in Means, Variance Known
	10-2.2 Choice of Sample Size
	10-2.3 Identifying Cause and Effect
	10-2.4 Confindence Interval on a Difference in Means, Variances Known
	10-2 Exercises

	10-3.Inference for the Difference in Means of Two Normal Distributions, Variances Unknown
	10-3.1 Hypothesis Tests for a Difference in Means, Variances Unknown
	10-3.2 More about the Equal Variance Assumption (CD Only)
	10-3.3 Choice of Sample Size
	10-3.4 Confidence Interval on the Difference in Means
	10-3 Exercises

	10-4 Paired t-Test
	10-4 Exercises

	10-5 Inferences on the Variances of Two Normal Populations
	10-5.1 The F Distribution
	10-5.2 Development of the F Disribution (CD Only)
	10-5.3 Hypothesis Tests on the Ratio of Two Variances
	10-5.4  Beta-Error and Choice of Samle Size
	10-5.5 Confidence Interval on the Ratio of Two Variances 
	10-5 Exercises

	10-6 Inference on Two Population Proportions
	10-6.1 Large-Sample Test for Ho : p1 = p2 
	10-6.2 Small-Sample Test for Ho : p1= p2  (CD Only)
	10-6.3  Beta-Error and Choice of Sample Size
	10-6.4 Confidence Interval for p1 - p2
	10-6 Exercises

	10-7 Summary Table For Inference Procedures For Two Samples
	Supplemental Exercises
	Important Terms and Concepts 
	Answers to Selected Exercises
	Section 10-2
	Section 10-3
	Section 10-4
	Section 10-5
	Section 10-6
	Supplemental

	Chapter 10 Selected Problem Solutions

	Chapter 11 Simple Linear Regression and Correlation
	11-1 Empirical Models
	11-2 Simple Linear Regression
	11-2 Exercises

	11-3 Properties of The Least Squares Estimators
	11-4 Some Comments on Uses of Regression  (CD Only)
	11-5 Hypothesis Tests in Simple Linear Regression
	11-5.1 Use of t-Tests
	11-5.2 Analysis of Variance Approach to Test Significance of Regression
	11-5 Exercises

	11-6 Confidence Intervals
	11-6.1 Confidence Intervals on the Slope and Intercept
	11-6.2 Confidence Interval on the Mean Response
	11-6 Exercises

	11-7 Prediction of New Observations
	11-7 Exercises

	11-8 Adequacy of the Regression Model
	11-8.1 Residual Analysis
	11-8.2 Coefficient of Determination (R to the power 2)
	11-8.3 Lack-of-fit Test (CD Only)
	11-8 Exercises

	11-9 Transformations To A Straight Line
	11-10 More About Transformations (CD Only)
	11-10 Exercises

	11-11 Correlation
	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 11-2
	Section 11-5
	Section 11-6
	Section 11-7
	Section 11-8
	Section 11-10
	Supplemental

	Chapter 11 Selected Problem Solutions

	Chapter 12 Multiple Linear Regression 
	12-1 Multiple Linear Regression Model
	12.1.1 Introduction
	12-1.2 Least Squares Estimation of the Parameters
	12-1.3 Matrix Approach to Multiple Linear Regression
	12-1.4 Properties of the Least Squares Estimators
	12-1 Exercises

	12-2 Hypothesis Tests in Multiple Linear Regression
	12-2.1 Test for Significance of Regression
	12-2.2 Tests on Individuals Regression Coefficients and Subsets of Coefficients 
	12-2.3 More About the Extra Sum of Squares Method (CD Only)
	12-2 Exercises

	12-3 Confidence Intervals in Multiple Linear Regression
	12-3.1 Confidence Intervals on Individual Regresion Coefficients
	12-3.2 Confidence Interval on the Mean Response 
	12-3 Exercises

	12-4 Prediction of New Observations
	12-4 Exercises

	12-5 Model Adequacy Checking
	12-5.1 Residual Analysis
	12-5.2 Influential Observations
	12-5 Exercises

	12-6 Aspects of Multiple Regression Modeling
	12-6.1 Polynomial Regression Models
	12-6.2 Categorical Regressors and Indicator Variables
	12-6.3 Selection of Variables and Model Building
	12-6.4 Multicollinearity
	12-6.5 Ridge Regression (CD  Only)
	12-6.6 Nonlinear Regression (CD Only)
	12-6 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 12-1
	Section 12-2
	Section 12-3
	Section 12-4
	Section 12-5
	Section 12-6
	Supplemental

	Chapter 12 Selected Problem Solutions

	Chapter 13 Design and Analysis of Single-Factor Experiments: The Analysis of Variance
	13-1 Designing Engineering Experiments
	13-2 The Completely Randomized Single-Factor Experiment
	13-2.1 An Example
	13-2.2 The Analysis of Variance
	13-2.3 Multiple Comparisons Following  the ANOVA
	13-2.4 More About Multiple Comparison (CD Only)
	13-2.5 Residual Analysis and Model Checking
	13-2.6 Determining Sample Size
	13-2.7 Technical Details About the Analysis of Variance (CD Only)
	13-2 Exercises

	13-3 The Random-Effects Model
	13-3.1 Fixed Versus Random Factors
	13-3.2 ANOVA and Variance Components
	13-3.3 Determining Sample Size in the Random Model (CD Only)
	13-3 Exercises

	13-4 Randomized Complete Block Design
	13-4.1 Design and Statistical Analysis
	13-4.2 Multiple Comparisons
	13-4.3 Residual Analysis and Model Checking
	13-4.4 Randomized Complete Block Design with Random Factors  (CD Only)
	13-4 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 13-2
	Section 13-3
	Section 13-4
	Supplemental

	Chapter 13 Selected Problem Solutions

	Chapter 14 Design of Experiments with Several Factors
	14-1 Introduction
	14-2 Some Applications of Designed Experiments (CD Only)
	14-3 Factorial Experiments
	14-4 Two-Factor Factorial Experiments
	14-4.1 Statistical Analysis of the Fixed-Effects Model
	14-4.2 Model Adequacy Checking
	14-4.3 One Observation per Cell
	14-4.4 Factorial Experiments with Random Factors: Overview
	14-4 Exercises

	14-5 General Factorial Experiments
	14-5 Exercises

	14-6 Factorial Experiments with Random Factors (CD Only)
	14-7 2^k Factorial Designs
	14-7.1  2^2 Design
	14-7.2  2^k Design for k greater than or equal to 3 Factors
	14-7.3 Single Replicate of the 2^k Design
	14-7.4 Addition of Center Points to a 2^k Design (CD Only)
	14-7 Exercises

	14-8 Blocking and Confounding in the 2^k Design
	14-8 Exercises

	14-9 Fractional Replication of the 2^k Design
	14-9.1 One-Half Fraction of the 2^k Design
	14-9.2 Smaller Fractions: The 2^(k-p) Fractional Factorial
	14-9 Exercises

	14-10 Response Surface Methods and Designs (CD Only)
	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 14-4
	Section 14-5
	Section 14-7
	Section 14-8
	Section 14-9
	Supplemental

	Chapter 14 Selected Problem Solutions

	Chapter 15 Nonparametric Statistics
	15-1 Introduction
	15-2 Sign Test
	15-2.1 Description of the Test 
	15-2.2 Sign Test for Paired Samples
	15-2.3 Type II Error for the Sign Test
	15-2.4 Comparison to the t-test
	15-2 Exercises

	15-3 Wilcoxon Signed-rank Test
	15-3.1 Description of the Test
	15-3.2 Large-Sample Approximation
	15-3.3 Paired Observations
	15-3.4 Comparison to the t-Test
	15-3 Exercises

	15-4 Wilcoxon Rank-sum Test
	15-4.1 Description of the Test
	15-4.2 Large-Sample Approximation
	15-4.3 Comparison to the t-Test
	15-4 Exercises

	15-5 Nonparametric Methods in the Analysis of Variance
	15-5.1 Kruskal-Wallis Test
	15-5.2 Rank Transformation
	15-5 Exercises

	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 15-2
	Section 15-3
	Section 15-4
	Section 15-5
	Supplemental

	Chapter 15 Selected Problem Solutions

	Chapter 16 Statistical Quality Control
	16-1 Quality Improvement and Statistics
	16-2 Statistical Quality Control
	16-3 Statistical Process Control
	16-4 Introduction to Control Charts
	16-4.1 Basic Principles
	16-4.2 Design of a Control Chart
	16-4.3 Rational Subgroups
	16-4.4 Analysis of Patterns on Control Charts

	16-5 X and R or S Control Charts
	16-5 Exercises

	16-6 Control Charts for Individual Measurements
	16-6 Exercises

	16-7 Process Capability
	16-7 Exercises

	16-8 Attribute Control Charts
	16-8.1 P Chart (Control Chart for Proportions)
	16-8.2 U Chart (Control Chart for Defects per Unit)
	16-8 Exercises

	16-9 Control Chart Performance
	16-9 Exercises

	16-10 Cumulative Sum Control Chart
	16-10 Exercises

	16-11 Other SPC Problem-solving Tools
	16-12 Implementing SPC
	Supplemental Exercises
	Important Terms and Concepts
	Answers to Selected Exercises
	Section 16-5
	Section 16-6
	Section 16-7
	Section 16-8
	Section 16-9
	Section 16-10
	Supplemental

	Chapter 16 Selected Problem Solutions

	Appendices
	App-A Statistical Tables and Charts
	Table I Summary of Common Probability Distributions
	Table II Cumulative Standard Normal Distribution
	Table III Percentage Points of the Chi-Squared Distribution
	Table IV Percentage Points of the t-Distribution
	Table V Percentage Points of the F-Distribution
	Chart VI Operating Characteristics Curves
	Table VII Critical Values for the Sign Test
	Table VIII Critical Values for the Wilcoxon Signed-Rank Test
	Table IX Critical Values for the Wilcoxon Rank-Sum Test
	Table X Factors for Constructing Variables Control Charts
	Table XI Factors for Tolerance Intervals

	App-B Bibliography
	Introductory Works and Graphical Methods
	Probability
	Mathematical Statistics 
	Engineering Statistics
	Regression Analysis
	Design of Experiments
	Nonparametric Statistics
	Statistical Quality Control and Related Methods

	App-C Answers to Selected Exercises
	Chapter 2 Answers to Selected Exercise
	Section 2-1
	Section 2-2
	Section 2-3
	Section 2-4
	Section 2-5
	Section 2-6
	Section 2-7
	Supplemental

	Chapter 3 Answer to Selected Exercises
	Section 3-1
	Section 3-2
	Section 3-3
	Section 3-4
	Section 3-5
	Section 3-6
	Section 3-7
	Section 3-8
	Section 3-9
	Supplemental Exercises

	Chapter 4 Answer to Selected Exercises
	Section 4-2
	Section 4-3
	Section 4-4
	Section 4-5
	Section 4-6
	Section 4-7
	Section 4-9
	Section 4-10
	Section 4-11
	Section 4-12
	Supplemental

	Chapter 5 Answer to Selected Exercises
	Section 5-1
	Section 5-2
	Section 5-3
	Section 5-4
	Section 5-5
	Section 5-6
	Section 5-7
	Supplemental

	Chapter 6 Answer to Selected Exercises
	Section 6-1
	Section 6-3
	Section 6-5
	Supplemental

	Chapter 7 Answer to Selected Exercises
	Section 7-2
	Section 7-3
	Section 7-5
	Supplemental

	Chapter 8 Answer to Selected Exercises
	Section 8-2
	Section 8-3
	Section 8-4
	Section 8-5
	Section 8-6
	Section 8-7
	Supplemental

	Chapter 9 Answer to Selected Exercises
	Section 9-1
	Section 9-2
	Section 9-3
	Section 9-4
	Section 9-5
	Section 9-7
	Section 9-8
	Supplemental

	Chapter 10 Answer to Selected Exercises
	Section 10-2
	Section 10-3
	Section 10-4
	Section 10-5
	Section 10-6
	Supplemental

	Chapter 11 Answer to Selected Exercises
	Section 11-2
	Section 11-5
	Section 11-6
	Section 11-7
	Section 11-8
	Section 11-10
	Supplemental

	Chapter 12 Answer to Selected Exercises
	Section 12-1
	Section 12-2
	Section 12-3
	Section 12-4
	Section 12-5
	Section 12-6
	Supplemental

	Chapter 13 Answer to Selected Exercises
	Section 13-2
	Section 13-3
	Section 13-4
	Supplemental

	Chapter 14 Answer to Selected Exercises
	Section 14-4
	Section 14-5
	Section 14-7
	Section 14-8
	Section 14-9
	Supplemental

	Chapter 15 Answer to Selected Exercises
	Section 15-2
	Section 15-3
	Section 15-4
	Section 15-5
	Supplemental

	Chapter 16 Answer to Selected Exercises
	Section 16-5
	Section 16-6
	Section 16-7
	Section 16-8
	Section 16-9
	Section 16-10
	Supplemental



	Glossary
	Index




