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After careful study of this chapter, you should be able to do the following:
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3. Use nonparametric alternatives to the single-factor ANOVA
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available for some of the text sections that appear on CD only. These exercises may be found within
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CHAPTER 15 NONPARAMETRIC STATISTICS

15-1 INTRODUCTION

Most of the hypothesis-testing and confidence interval procedures discussed in previous chap-
ters are based on the assumption that we are working with random samples from normal popu-
lations. Traditionally, we have called these procedures parametric methods because they are
based on a particular parametric family of distributions—in this case, the normal. Alternately,
sometimes we say that these procedures are not distribution-free because they depend on the as-
sumption of normality. Fortunately, most of these procedures are relatively insensitive to slight
departures from normality. In general, the #- and F-tests and the f-confidence intervals will have
actual levels of significance or confidence levels that differ from the nominal or advertised lev-
els chosen by the experimenter, although the difference between the actual and advertised levels
is usually fairly small when the underlying population is not too different from the normal.

In this chapter we describe procedures called nonparametric and distribution-free
methods, and we usually make no assumptions about the distribution of the underlying pop-
ulation other than that it is continuous. These procedures have actual level of significance o or
confidence level 100(1 — a)% for many different types of distributions. These procedures
have considerable appeal. One of their advantages is that the data need not be quantitative but
can be categorical (such as yes or no, defective or nondefective) or rank data. Another advan-
tage is that nonparametric procedures are usually very quick and easy to perform.

The procedures described in this chapter are competitors of the parametric #- and
F-procedures described earlier. Consequently, it is important to compare the performance of
both parametric and nonparametric methods under the assumptions of both normal and non-
normal populations. In general, nonparametric procedures do not utilize all the information
provided by the sample. As a result, a nonparametric procedure will be less efficient than the
corresponding parametric procedure when the underlying population is normal. This loss of
efficiency is reflected by a requirement of a larger sample size for the nonparametric proce-
dure than would be required by the parametric procedure in order to achieve the same power.
On the other hand, this loss of efficiency is usually not large, and often the difference in sam-
ple size is very small. When the underlying distributions are not close to normal, nonparamet-
ric methods have much to offer. They often provide considerable improvement over the
normal-theory parametric methods.

Generally, if both parametric and nonparametric methods are applicable to a particular
problem, we should use the more efficient parametric procedure. However, the assumptions for
the parametric method may be difficult or impossible to justify. For example, the data may be in
the form of ranks. These situations frequently occur in practice. For instance, a panel of judges
may be used to evaluate 10 different formulations of a soft-drink beverage for overall quality,
with the “best” formulation assigned rank 1, the “next-best” formulation assigned rank 2, and so
forth. It is unlikely that rank data satisfy the normality assumption. Many nonparametric meth-
ods involve the analysis of ranks and consequently are ideally suited to this type of problem.

15-2 SIGN TEST

15-2.1 Description of the Test

The sign test is used to test hypotheses about the median [ of a continuous distribution.
The median of a distribution is a value of the random variable X such that the probability
is 0.5 that an observed value of X is less than or equal to the median, and the probability is
0.5 that an observed value of X is greater than or equal to the median. That is,
PX=p)=PX=f) =05
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Since the normal distribution is symmetric, the mean of a normal distribution equals the
median. Therefore, the sign test can be used to test hypotheses about the mean of a normal dis-
tribution. This is the same problem for which we used the #-test in Chapter 9. We will discuss
the relative merits of the two procedures in Section 15-2.4. Note that, although the #-test was
designed for samples from a normal distribution, the sign test is appropriate for samples from
any continuous distribution. Thus, the sign test is a nonparametric procedure.

Suppose that the hypotheses are

Hy: v = po
Hy: i < o (15-1)
The test procedure is easy to describe. Suppose that X, X, . . ., X, is a random sample from
the population of interest. Form the differences
X; — Pos i=1,2,...,n (15-2)

Now if the null hypothesis Hy: . = [ is true, any difference X; — i, is equally likely
to be positive or negative. An appropriate test statistic is the number of these differences that
are positive, say R*. Therefore, to test the null hypothesis we are really testing that the
number of plus signs is a value of a binomial random variable that has the parameter p = 1/2.
A P-value for the observed number of plus signs #* can be calculated directly from the bino-
mial distribution. For instance, in testing the hypotheses in Equation 15-1, we will reject H,, in
favor of H, only if the proportion of plus signs is sufficiently less than 1/2 (or equivalently,
whenever the observed number of plus signs 7" is too small). Thus, if the computed P-value

1
P= P(RJr =" when p = 2)
is less than or equal to some preselected significance level «, we will reject H, and conclude
H, is true.
To test the other one-sided hypothesis

0
0 (15-3)

T o=
\Y,
= =

= =

we will reject H, in favor of H, only if the observed number of plus signs, say 7, is large or,
equivalently, whenever the observed fraction of plus signs is significantly greater than 1/2.
Thus, if the computed P-value

1
P=P<RJr = 7" when p 22)

is less than «, we will reject H, and conclude that H, is true.
The two-sided alternative may also be tested. If the hypotheses are

Hy: o # o (15-4)
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we should reject Hy: b = [ if the proportion of plus signs is significantly different (either
less than or greater than) from 1/2. This is equivalent to the observed number of plus signs 7"
being either sufficiently large or sufficiently small. Thus, if 7" < n/2 the P-value is

1
P = 2P(R+ =<7  when p = 2)
and if #* > n/2 the P-value is

1
P = ZP(R+ = 7" when p =2>

If the P-value is less than some preselected level «, we will reject H,, and conclude that H, is true.

EXAMPLE 15-1 Montgomery, Peck, and Vining (2001) report on a study in which a rocket motor is formed by
binding an igniter propellant and a sustainer propellant together inside a metal housing. The
shear strength of the bond between the two propellant types is an important characteristic. The
results of testing 20 randomly selected motors are shown in Table 15-1. We would like to test
the hypothesis that the median shear strength is 2000 psi, using a = 0.05.

This problem can be solved using the eight-step hypothesis-testing procedure introduced
in Chapter 9:

1. The parameter of interest is the median of the distribution of propellant shear strength.
2. Hy: p = 2000 psi

3. Hp:p #2000 psi

4. a=0.05

Table 15-1 Propellant Shear Strength Data

Observation Shear Strength Differences
i G x; — 2000 Sign
1 2158.70 +158.70 +
2 1678.15 —321.85 -
3 2316.00 +316.00 +
4 2061.30 +61.30 +
5 2207.50 +207.50 +
6 1708.30 —291.70 -
7 1784.70 —215.30 -
8 2575.10 +575.10 +
9 2357.90 +357.90 +
10 2256.70 +256.70 +
11 2165.20 +165.20 +
12 2399.55 +399.55 +
13 1779.80 —220.20 -
14 2336.75 +336.75 +
15 1765.30 —234.70 -
16 2053.50 +53.50 +
17 2414.40 +414.40 +
18 2200.50 +200.50 +
19 2654.20 +654.20 +

[\
(=)

1753.70 —246.30
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5. The test statistic is the observed number of plus differences in Table 15-1, or

rT =14
6. We will reject H, if the P-value corresponding to »* = 14 is less than or equal to
a = 0.05.

7. Computations: Since ™ = 14 is greater than n/2 = 20/2 = 10, we calculate the
P-value from

1
P=2P<RJr = 14 when p :)

2
20 20
=2 > ( )(0.5)’(0.5)20"
=14\ 7
=0.1153

8. Conclusions: Since P = 0.1153 is not less than a = 0.05, we cannot reject the null
hypothesis that the median shear strength is 2000 psi. Another way to say this is that
the observed number of plus signs »* = 14 was not large or small enough to indi-
cate that median shear strength is different from 2000 psi at the a« = 0.05 level of
significance.

It is also possible to construct a table of critical values for the sign test. This table is
shown as Appendix Table VII. The use of this table for the two-sided alternative hypothesis in
Equation 15-4 is simple. As before, let R denote the number of the differences (X; — fi) that
are positive and let R~ denote the number of these differences that are negative. Let R = min
(R*, R7). Appendix Table VII presents critical values 7* for the sign test that ensure that P
(type I error) = P (reject H, when H,, is true) = o for « = 0.01, o = 0.05 and o = 0.10. If
the observed value of the test statistic » = 7%, the null hypothesis Hy: . = po should be
rejected.

To illustrate how this table is used, refer to the data in Table 15-1 that was used in
Example 15-1. Now " = 14 and ~ = 6; therefore, » = min (14, 6) = 6. From Appendix
Table VII with n = 20 and o = 0.05, we find that 7§,s = 5. Since » = 6 is not less than or
equal to the critical value 7§ ,s = 5, we cannot reject the null hypothesis that the median shear
strength is 2000 psi.

We can also use Appendix Table VII for the sign test when a one-sided alternative
hypothesis is appropriate. If the alternative is H;: [L > (i, reject Hy: p = po if r~ = r¥;
if the alternative is H;: [l > fio, reject Hy: L = o if " = r%. The level of significance of
a one-sided test is one-half the value for a two-sided test. Appendix Table VII shows the
one-sided significance levels in the column headings immediately below the two-sided
levels.

Finally, note that when a test statistic has a discrete distribution such as R does in the sign
test, it may be impossible to choose a critical value 7% that has a level of significance exactly
equal to a. The approach used in Appendix Table VII is to choose 7% to yield an « that is as
close to the advertised significance level a as possible.

Ties in the Sign Test

Since the underlying population is assumed to be continuous, there is a zero probability that
we will find a “tie”—that is, a value of X; exactly equal to [L,. However, this may sometimes
happen in practice because of the way the data are collected. When ties occur, they should be
set aside and the sign test applied to the remaining data.
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EXAMPLE 15-2

The Normal Approximation

When p = 0.5, the binomial distribution is well approximated by a normal distribution when
n is at least 10. Thus, since the mean of the binomial is np and the variance is np(1 — p), the
distribution of R is approximately normal with mean 0.5x and variance 0.257 whenever 7 is
moderately large. Therefore, in these cases the null hypothesis Hj: . = [, can be tested using
the statistic

Rt — 0.5n

Z =
0 0.5Vn

(15-5)

The two-sided alternative would be rejected if the observed value of the test statistic
| Zo| > z,/2, and the critical regions of the one-sided alternative would be chosen to reflect the
sense of the alternative. (If the alternative is H,: p. > [, reject H, if z, > z,, for example.)

We will illustrate the normal approximation procedure by applying it to the problem in
Example 15-1. Recall that the data for this example are in Table 15-1. The eight-step proce-
dure follows:

1. The parameter of interest is the median of the distribution of propellant shear strength.

2. Hy [ = 2000 psi
3. Hp:p #2000 psi
4. o =10.05
5. The test statistic is
_rt—05n
07 T 05Va

6. Since a = 0.05, we will reject H, in favor of H, if |zy| > zggps = 1.96.

7. Computations: Since r* = 14, the test statistic is

14— 05(20)

0 05v20

= 1.789

8. Conclusions: Since z, = 1.789 is not greater than z; 1,5 = 1.96, we cannot reject the
null hypothesis. Thus, our conclusions are identical to those in Example 15-1.

15-2.2 Sign Test for Paired Samples

The sign test can also be applied to paired observations drawn from continuous populations.
Let (X, X)), j = 1,2,. .., nbeacollection of paired observations from two continuous pop-
ulations, and let

D]:Xl]_XZj j:1,2,...,n
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be the paired differences. We wish to test the hypothesis that the two populations have a
common median, that is, that [L; = [L,. This is equivalent to testing that the median of the
differences fL, = 0. This can be done by applying the sign test to the n observed differences
d,, as illustrated in the following example.

An automotive engineer is investigating two different types of metering devices for an
electronic fuel injection system to determine whether they differ in their fuel mileage
performance. The system is installed on 12 different cars, and a test is run with each meter-
ing device on each car. The observed fuel mileage performance data, corresponding differ-
ences, and their signs are shown in Table 15-2. We will use the sign test to determine whether
the median fuel mileage performance is the same for both devices using « = 0.05. The eight-
step-procedure follows:

1. The parameters of interest are the median fuel mileage performance for the two
metering devices.

2. Hy vy = [y, or, equivalently, Hy: up = 0

3. Hy:[i; # P, or, equivalently, H;: jup # 0

4. a=0.05

5. We will use Appendix Table VII to conduct the test, so the test statistic is » =
min(+*, 7).

6. Since a = 0.05and n = 12, Appendix Table VII gives the critical values as 7,5 = 2.
We will reject H; in favor of H, if r = 2.

7. Computations: Table 15-2 shows the differences and their signs, and we note that
r* =8,r  =4,and sor = min(8, 4) = 4.

8. Conclusions: Since = 4 is not less than or equal to the critical value r§,; = 2, we
cannot reject the null hypothesis that the two devices provide the same median fuel
mileage performance.

Table 15-2 Performance of Flow Metering Devices

Metering Device

Car 1 2 Difference, d; Sign
1 17.6 16.8 0.8 +
2 19.4 20.0 —0.6 -
3 19.5 18.2 1.3 +
4 17.1 16.4 0.7 +
5 15.3 16.0 —0.7 -
6 15.9 15.4 0.5 +
7 16.3 16.5 —0.2 —
8 18.4 18.0 0.4 +
9 17.3 16.4 0.9 +

10 19.1 20.1 -1.0 —
11 17.8 16.7 1.1 +
12 18.2 17.9 0.3 +
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15-2.3 Type Il Error for the Sign Test

Figure 15-1 Calcula-
tion of 3 for the sign
test. (a) Normal
distributions. (b)
Exponential
distributions.

The sign test will control the probability of type I error at an advertised level a for testing the null
hypothesis Hy: . = p for any continuous distribution. As with any hypothesis-testing procedure,
it is important to investigate the probability of a type II error, B. The test should be able to effec-
tively detect departures from the null hypothesis, and a good measure of this effectiveness is the
value of B for departures that are important. A small value of B implies an effective test procedure.

In determining (3, it is important to realize not only that a particular value of [, say py + A,
must be used but also that the form of the underlying distribution will affect the calculations. To
illustrate, suppose that the underlying distribution is normal with o = 1 and we are testing the
hypothesis Hy: (L. = 2 versus H;: . > 2. (Since . = w in the normal distribution, this is equiv-
alent to testing that the mean equals 2.) Suppose that it is important to detect a departure from
B = 2 to i = 3. The situation is illustrated graphically in Fig. 15-1(a). When the alternative
hypothesis is true (H,: . = 3), the probability that the random variable X is less than or equal to
the value 2 is

p=PX=2)=PZ=—-1)=®d(—1)=0.1587
Suppose we have taken a random sample of size 12. At the o = 0.05 level, Appendix Table VII

indicates that we would reject Hy: . = 2 if r~ = r§ s = 2. Therefore, 3 is the probability that
we do not reject Hy: L = 2 when in fact . = 3, or

2 (12
B=1- 2( )(0.1587)"(0.8413)12_" = 0.2944
x=0\X

o=1 o=1
0.1587

-1 0 1 2 3 4 5 x -1 0 1 2 3 4 5 6 x

UnderHg: =2 UnderHy: u=3

(@)
0.3699
u=2 pn=2.89 x 2 u=4.33 x
UnderHg: =2 UnderHy: u=3

(b)
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If the distribution of X had been exponential rather than normal, the situation would be as
shown in Fig. 15-1(b), and the probability that the random variable X is less than or equal
to the value x = 2 when L = 3 (note that when the median of an exponential distribution
is 3, the mean is 4.33) is

2
1 1
p= P(XS 2) = j —— e 433 dx = 0.3699
) 433

In this case,

2 (12
B=1- > ( )(0.3699)*”(0.6301)12‘)‘ = 0.8794
X

x=0

Thus, B for the sign test depends not only on the alternative value of p but also on the
area to the right of the value specified in the null hypothesis under the population probabil-
ity distribution. This area is highly dependent on the shape of that particular probability dis-
tribution.

15-2.4 Comparison to the t-Test

If the underlying population is normal, either the sign test or the #-test could be used to test
Hy: L = [ The #-test is known to have the smallest value of B possible among all tests that
have significance level a for the one-sided alternative and for tests with symmetric critical re-
gions for the two-sided alternative, so it is superior to the sign test in the normal distribution
case. When the population distribution is symmetric and nonnormal (but with finite mean
. = [L), the r-test will have a smaller 3 (or a higher power) than the sign test, unless the dis-
tribution has very heavy tails compared with the normal. Thus, the sign test is usually consid-
ered a test procedure for the median rather than as a serious competitor for the #-test. The
Wilcoxon signed-rank test discussed in the next section is preferable to the sign test and
compares well with the #-test for symmetric distributions.

EXERCISES FOR SECTION 15-2

15-1. Ten samples were taken from a plating bath used in an
electronics manufacturing process, and the bath pH was deter-
mined. The sample pH values are 7.91, 7.85, 6.82, 8.01, 7.46,
6.95, 7.05, 7.35, 7.25, 7.42. Manufacturing engineering be-
lieves that pH has a median value of 7.0. Do the sample data
indicate that this statement is correct? Use the sign test with
o = 0.05 to investigate this hypothesis. Find the P-value for
this test.

15-2. The titanium content in an aircraft-grade alloy is an
important determinant of strength. A sample of 20 test coupons
reveals the following titanium content (in percent):

8.32, 8.05, 8.93, 8.65, 8.25, 8.46, 8.52, 8.35, 8.36, 8.41, 8.42,
8.30, 8.71, 8.75, 8.60, 8.83, 8.50, 8.38, 8.29, 8.46

The median titanium content should be 8.5%. Use the sign test
with o = 0.05 to investigate this hypothesis. Find the P-value
for this test.

15-3. The impurity level (in ppm) is routinely measured in
an intermediate chemical product. The following data were
observed in a recent test:

24,25,1.7,1.6,19,2.6,13,1.9,2.0,25,2.6,23,2.0, 1.8,
13,1.7,2.0,19,23,19,24,1.6

Can you claim that the median impurity level is less than
2.5 ppm? State and test the appropriate hypothesis using the
sign test with a = 0.05. What is the P-value for this
test?
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15-4. Consider the data in Exercise 15-1. Use the normal

approximation for the sign test to test Hy: L = 7.0 versus

H,: i # 7.0. What is the P-value for this test?

15-5.

8-26.

(a) Use the sign test to investigate the claim that the median
strength is at least 2250 psi. Use a = 0.05.

(b) Use the normal approximation to test the same hypothesis
that you formulated in part (a). What is the P-value for
this test?

15-6. Consider the margarine fat content data in Exercise
8-25. Use the sign test to test Hy: p. = 17.0 versus
Hy: p # 17.0, with o = 0.05. Find the P-value for the test
statistic and use this quantity to make your decision.

15-7. Consider the data in Exercise 15-2. Use the normal
approximation for the sign test to test Hy: (L = 8.5 versus
Hy: p # 8.5, with a = 0.05. What is the P-value for this
test?

15-8. Consider the data in Exercise 15-3. Use the normal
approximation for the sign test to test Hy: p. = 2.5 versus
Hy: 0 < 2.5. What is the P-value for this test?

15-9. Two different types of tips can be used in a Rockwell
hardness tester. Eight coupons from test ingots of a nickel-
based alloy are selected, and each coupon is tested twice, once
with each tip. The Rockwell C-scale hardness readings are
shown in the following table. Use the sign test with o = 0.05
to determine whether or not the two tips produce equivalent
hardness readings.

Consider the compressive strength data in Exercise

Coupon Tip 1 Tip 2
1 63 60
2 52 51
3 58 56
4 60 59
5 55 58
6 57 54
7 53 52
8 59 61

15-10. Two different formulations of primer paint can be
used on aluminum panels. The drying time of these two for-
mulations is an important consideration in the manufacturing
process. Twenty panels are selected; half of each panel is
painted with primer 1, and the other half is painted with
primer 2. The drying times are observed and reported in the
following table. Is there evidence that the median drying
times of the two formulations are different? Use the sign test
with « = 0.01.

Drying Times (in hr)
Panel Formulation 1 Formulation 2
1 1.6 1.8
2 1.3 1.5
3 1.5 1.5
4 1.6 1.7
5 1.7 1.6
6 1.9 2.0
7 1.8 2.1
8 1.6 1.7
9 1.4 1.6
10 1.8 1.9
11 1.9 2.0
12 1.8 1.9
13 1.7 1.5
14 1.5 1.7
15 1.6 1.6
16 1.4 1.2
17 1.3 1.6
18 1.6 1.8
19 1.5 1.6
20 1.8 2.0
15-11. Use the normal approximation to the sign test for the

data in Exercise 15-10. What conclusions can you draw?
15-12. The diameter of a ball bearing was measured by 12
inspectors, each using two different kinds of calipers. The
results were as follows:

Inspector Caliper 1 Caliper 2
1 0.265 0.264
2 0.265 0.265
3 0.266 0.264
4 0.267 0.266
5 0.267 0.267
6 0.265 0.268
7 0.267 0.264
8 0.267 0.265
9 0.265 0.265

10 0.268 0.267
11 0.268 0.268
12 0.265 0.269

Is there a significant difference between the medians of the
population of measurements represented by the two samples?
Use o = 0.05.



15-13. Consider the blood cholesterol data in Exercise
10-39. Use the sign test to determine whether there is any dif-
ference between the medians of the two groups of measure-
ments, with a = 0.05. What practical conclusion would you
draw from this study?

15-14. Use the normal approximation for the sign test for
the data in Exercise 15-12. With a = 0.05, what conclusions
can you draw?

15-15. Use the normal approximation to the sign test for
the data in Exercise 15-13. With a = 0.05, what conclusions
can you draw?

15-16. The distribution time between arrivals in a telecom-

munication system is exponential, and the system manager

wishes to test the hypothesis that Hy: L = 3.5 minutes versus

Hi: > 3.5 minutes.

(a) What is the value of the mean of the exponential distribu-
tion under H,: L = 3.5?

(b) Suppose that we have taken a sample of » = 10 observa-
tions and we observe 7~ = 3. Would the sign test reject H,
ata = 0.05?

15-3 WILCOXON SIGNED-RANK TEST

15-3 WILCOXON SIGNED-RANK TEST 581

(c) What is the type II error probability of this test if B =
4.5?

15-17. Suppose that we take a sample of » = 10 measure-

ments from a normal distribution with o = 1. We wish to test

Hy: = 0 against H;: p > 0. The normal test statistic is

Zy = X/(0/Vn), and we decide to use a critical region of 1.96

(that is, reject H, if z, = 1.96).

(a) What is « for this test?

(b) What is 3 for this test, if w. = 1?

(c) If a sign test is used, specify the critical region that gives
an a value consistent with o for the normal test.

(d) What is the B value for the sign test, if w = 1? Compare
this with the result obtained in part (b).

15-18. Consider the test statistic for the sign test in

Exercise 15-9. Find the P-value for this statistic.

15-19. Consider the test statistic for the sign test in Exercise

15-10. Find the P-value for this statistic. Compare it to the

P-value for the normal approximation test statistic computed

in Exercise 15-11.

The sign test makes use only of the plus and minus signs of the differences between the ob-
servations and the median iy (or the plus and minus signs of the differences between the
observations in the paired case). It does not take into account the size or magnitude of these
differences. Frank Wilcoxon devised a test procedure that uses both direction (sign) and mag-
nitude. This procedure, now called the Wilcoxon signed-rank test, is discussed and illus-

trated in this section.

The Wilcoxon signed-rank test applies to the case of symmetric continuous distribu-
tions. Under these assumptions, the mean equals the median, and we can use this procedure to
test the null hypothesis that m 5 m0. We now show how to do this.

15-3.1 Description of the Test

We are interested in testing H,: w = w, against the usual alternatives. Assume that X,
X,,. . .,X,1s arandom sample from a continuous and symmetric distribution with mean (and
median) w. Compute the differences X; — gy, i = 1,2, . . ., n. Rank the absolute differences
| X; — wol,i = 1,2,...,n in ascending order, and then give the ranks the signs of their
corresponding differences. Let W' be the sum of the positive ranks and W~ be the absolute
value of the sum of the negative ranks, and let W = min(W~", W~). Appendix Table VIII con-
tains critical values of ¥, say w¥. If the alternative hypothesis is Hy: p # g, then if the ob-
served value of the statistic w = w¥%, the null hypothesis H,: u = p, is rejected. Appendix
Table VIII provides significance levels of a = 0.10, a = 0.05, o = 0.02, « = 0.01 for the

two-sided test.

For one-sided tests, if the alternative is H,: . > ., reject Hy: o = poif w™ = w¥; and if
the alternative is H,: . < g, reject Hy: o = o if w* = w*. The significance levels for one-
sided tests provided in Appendix Table VIII are a = 0.05, 0.025, 0.01, and 0.005.
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EXAMPLE 15-4 We will illustrate the Wilcoxon signed-rank test by applying it to the propellant shear strength
data from Table 15-1. Assume that the underlying distribution is a continuous symmetric dis-
tribution. The eight-step procedure is applied as follows:

1. The parameter of interest is the mean (or median) of the distribution of propellant
shear strength.

Hy: o = 2000 psi

Hy: o # 2000 psi

o = 0.05

The test statistic is

Nk N

w = min(w", w")

6. We will reject Hy if w = w§ s = 52 from Appendix Table VIII.

7. Computations: The signed ranks from Table 15-1 are shown in the following table:

Observation Difference x; — 2000 Signed Rank
16 +53.50 +1
4 +61.30 +2
1 +158.70 +3
11 +165.20 +4
18 +200.50 +5
5 +207.50 +6
7 —215.30 -7
13 —220.20 -8
15 —234.70 -9
20 —246.30 -10
10 +256.70 +11
6 —291.70 —12
3 +316.00 +13
2 —321.85 —14
14 +336.75 +15
9 +357.90 +16
12 +399.55 +17
17 +414.40 +18
8 +575.10 +19
19 +654.20 +20

The sum of the positive ranksisw" = (1 +2+3 +4+5+6 + 11 + 13 + 15 +
16 + 17 + 18 + 19 + 20) = 150, and the sum of the absolute values of the negative
ranksisw™ = (7 + 8 + 9 + 10 + 12 + 14) = 60. Therefore,

w = min(150, 60) = 60
8. Conclusions: Since w = 60 is not less than or equal to the critical value w5 = 52,

we cannot reject the null hypothesis that the mean (or median, since the population is
assumed to be symmetric) shear strength is 2000 psi.
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Ties in the Wilcoxon Signed-Rank Test

Because the underlying population is continuous, ties are theoretically impossible, although
they will sometimes occur in practice. If several observations have the same absolute magni-
tude, they are assigned the average of the ranks that they would receive if they differed slightly
from one another.

15-3.2 Large-Sample Approximation

If the sample size is moderately large, say n > 20, it can be shown that W* (or W) has
approximately a normal distribution with mean

_n(n+1)
Mt = 4

and variance
n(n + 1)2n + 1)
24

O+ =

Therefore, a test of H,: . = ., can be based on the statistic

;o Wt —n(n+ 1)/4
O Va(n + 1)(2n + 1)/24

(15-6)

An appropriate critical region for either the two-sided or one-sided alternative hypotheses can
be chosen from a table of the standard normal distribution.

15-3.3 Paired Observations

EXAMPLE 15-5

The Wilcoxon signed-rank test can be applied to paired data. Let (X,;, X;,), j = 1,2,. . .,nbe
a collection of paired observations from two continuous distributions that differ only with re-
spect to their means. (It is not necessary that the distributions of X; and X, be symmetric.) This
assures that the distribution of the differences D; = X}; — X;; is continuous and symmetric.
Thus, the null hypothesis is H: ; = W,, which is equivalent to H,: i, = 0. We initially con-
sider the two-sided alternative H;: ., # W, (or H;: wp # 0).

To use the Wilcoxon signed-rank test, the differences are first ranked in ascending order of
their absolute values, and then the ranks are given the signs of the differences. Ties are assigned
average ranks. Let W™ be the sum of the positive ranks and W~ be the absolute value of the sum
of the negative ranks, and W = min(W*, W™). If the observed value w = w*, the null hypoth-
esis Hy: v = W, (or Hy: wp = 0) is rejected where w¥ is chosen from Appendix Table VIII.

For one-sided tests, if the alternative is H;: i, > W, (or H;: pp > 0), reject Hyif w™ = w¥;
and if Hy: wy < p, (or Hy: pp < 0), reject Hy if w* = w, Be sure to use the one-sided test
significance levels shown in Appendix Table VIII.

We will apply the Wilcoxon signed-rank test to the fuel-metering device test data used previously
in Example 15-3. The eight-step hypothesis-testing procedure can be applied as follows:

1. The parameters of interest are the mean fuel mileage performance for the two meter-
ing devices.
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Hy: i, = ., or, equivalently, Hy: pp = 0
H: w, # w, or, equivalently, H;: pp # 0
a = 0.05

The test statistic is

Nk wN

w = min(w", w")
where w™ and w™ are the sums of the positive and negative ranks of the differences

in Table 15-2.

6. Since a = 0.05 and n = 12, Appendix Table VIII gives the critical value as w§ s = 13.
We will reject Hy: pp = 0if w = 13.

7. Computations: Using the data in Table 15-2, we compute the following signed ranks:

Car Difference Signed Rank
7 —-0.2 -1
12 0.3 2
8 0.4 3
6 0.5 4
2 —0.6 =5
4 0.7 6.5
5 —-0.7 —6.5
1 0.8 8
9 0.9 9
10 -1.0 —10
11 1.1 11
3 1.3 12

Note that w* = 55.5 and w~ = 22.5. Therefore,
w = min(55.5,22.5) = 22.5

8. Conclusions: Since w = 22.5 is not less than or equal to w,s = 13, we cannot reject the
null hypothesis that the two metering devices produce the same mileage performance.

15-3.4 Comparison to the t-Test

When the underlying population is normal, either the s-test or the Wilcoxon signed-rank test
can be used to test hypotheses about .. As mentioned earlier, the #-test is the best test in such
situations in the sense that it produces a minimum value of 3 for all tests with significance
level a.. However, since it is not always clear that the normal distribution is appropriate, and
since in many situations it is inappropriate, it is of interest to compare the two procedures for
both normal and nonnormal populations.

Unfortunately, such a comparison is not easy. The problem is that 3 for the Wilcoxon
signed-rank test is very difficult to obtain, and 3 for the #-test is difficult to obtain for nonnormal
distributions. Because type II error comparisons are difficult, other measures of comparison
have been developed. One widely used measure is asymptotic relative efficiency (ARE).



15-4 WILCOXON RANK-SUM TEST 585

The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to
obtain identical error probabilities for the two procedures. For example, if the ARE of one test
relative to the competitor is 0.5, when sample sizes are large, the first test will require twice as
large a sample as the second one to obtain similar error performance. While this does not tell
us anything for small sample sizes, we can say the following:

1. For normal populations, the ARE of the Wilcoxon signed-rank test relative to the
t-test is approximately 0.95.

2. For nonnormal populations, the ARE is at least 0.86, and in many cases it will exceed
unity.

Although these are large-sample results, we generally conclude that the Wilcoxon signed-rank
test will never be much worse than the #-test and that in many cases where the population is non-
normal it may be superior. Thus, the Wilcoxon signed-rank test is a useful alternate to the 7-test.

EXERCISES FOR SECTION 15-3

15-20. Consider the data in Exercise 15-1 and assume that
the distribution of pH is symmetric and continuous. Use the
Wilcoxon signed-rank test with a = 0.05 to test the hypothe-
sis Hy: u = 7 against H;: p # 7.

15-21. Consider the data in Exercise 15-2. Suppose that the
distribution of titanium content is symmetric and continuous.
Use the Wilcoxon signed-rank test with o = 0.05 to test the
hypothesis Hy: o = 8.5 versus H;: . # 8.5.

15-22. Consider the data in Exercise 15-2. Use the large-
sample approximation for the Wilcoxon signed-rank test to test
the hypothesis H: . = 8.5 versus H;: p # 8.5. Use a = 0.05.
Assume that the distribution of titanium content is continuous
and symmetric.

15-23. Consider the data in Exercise 15-3. Use the Wilcoxon
signed-rank test to test the hypothesis Hy,: p = 2.5 ppm versus
Hy: < 2.5 ppm with o = 0.05. Assume that the distribution of
impurity level is continuous and symmetric.

15-4 WILCOXON RANK-SUM TEST

15-24. Consider the Rockwell hardness test data in
Exercise 15-9. Assume that both distributions are continuous
and use the Wilcoxon signed-rank test to test that the mean
difference in hardness readings between the two tips is zero.
Use o = 0.05.

15-25. Consider the paint drying time data in Exercise 15-10.
Assume that both populations are continuous, and use the
Wilcoxon signed-rank test to test that the difference in mean
drying times between the two formulations is zero. Use
a = 0.01.

15-26.  Apply the Wilcoxon signed-rank test to the meas-
urement data in Exercise 15-12. Use a = 0.05 and as-
sume that the two distributions of measurements are contin-
uous.

15-27.  Apply the Wilcoxon signed-rank test to the blood cho-
lesterol data from Exercise 10-39. Use o = 0.05 and assume that
the two distributions are continuous.

Suppose that we have two independent continuous populations X; and X, with means ., and
W,. Assume that the distributions of X and X, have the same shape and spread and differ only
(possibly) in their locations. The Wilcoxon rank-sum test can be used to test the hypothesis
Hy: v, = w,. This procedure is sometimes called the Mann-Whitney test, although the Mann-
Whitney test statistic is usually expressed in a different form.

15-4.1 Description of the Test

Let X1, Xip, . . ., Xjp, and Xy, X5y, . . ., X;,,, be two independent random samples of sizes n; =
n, from the continuous populations X; and X, described earlier. We wish to test the hypotheses

Hy: oy = po
Hyipy #
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EXAMPLE 15-6

The test procedure is as follows. Arrange all n, + n, observations in ascending order of
magnitude and assign ranks to them. If two or more observations are tied (identical), use the
mean of the ranks that would have been assigned if the observations differed.

Let W, be the sum of the ranks in the smaller sample (1), and define W, to be the sum of
the ranks in the other sample. Then,

n + n)(ny +n +1
LD UL 159,

Now if the sample means do not differ, we will expect the sum of the ranks to be nearly equal
for both samples after adjusting for the difference in sample size. Consequently, if the sums of
the ranks differ greatly, we will conclude that the means are not equal.

Appendix Table IX contains the critical value of the rank sums for &« = 0.05 and a = 0.01
assuming the two-sided alternative above. Refer to Appendix Table IX with the appropriate
sample sizes n; and n,, and the critical value w, can be obtained. The null Hy: ., = p, is
rejected in favor of H;: ., # W, if either of the observed values w; or w;, is less than or equal
to the tabulated critical value w,,.

The procedure can also be used for one-sided alternatives. If the alternative is H,: p; < s,
reject Hy if w, = wy; for H: ., > w,, reject Hy if w, = w,. For these one-sided tests, the tabu-
lated critical values w, correspond to levels of significance of a = 0.025 and o = 0.005.

The mean axial stress in tensile members used in an aircraft structure is being studied. Two alloys
are being investigated. Alloy 1 is a traditional material, and alloy 2 is a new aluminum-lithium al-
loy that is much lighter than the standard material. Ten specimens of each alloy type are tested,
and the axial stress is measured. The sample data are assembled in Table 15-3. Using o = 0.05, we
wish to test the hypothesis that the means of the two stress distributions are identical.

We will apply the eight-step hypothesis-testing procedure to this problem:

1. The parameters of interest are the means of the two distributions of axial stress.

2. Hypp =y

3. Hip #

4. a=0.05

5. We will use the Wilcoxon rank-sum test statistic in Equation 15-7,

(I’ll + }’lz)(l’ll + ny + 1)
2

Wy = - W

6. Since a = 0.05 and n; = n, = 10, Appendix Table IX gives the critical value as w5 =
78. If either w; or w, is less than or equal to w, s = 78, we will reject Hy: v, = ..

Table 15-3  Axial Stress for Two Aluminum-Lithium Alloys

Alloy 1 Alloy 2
238 psi 3254 psi 3261 psi 3248 psi
3195 3229 3187 3215
3246 3225 3209 3226
3190 3217 3212 3240

3204 3241 3258 3234
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7. Computations: The data from Table 15-3 are analyzed in ascending order and ranked
as follows:

Alloy Number Axial Stress Rank
2 3187 psi 1
1 3190 2
1 3195 3
1 3204 4
2 3209 5
2 3212 6
2 3215 7
1 3217 8
1 3225 9
2 3226 10
1 3229 11
2 3234 12
1 3238 13
2 3240 14
1 3241 15
1 3246 16
2 3248 17
1 3254 18
2 3258 19
2 3261 20

The sum of the ranks for alloy 1 is

w=2+3+4+8+9+11+13+15+ 16+ 18 =99

and for alloy 2

(ny + ny)(my + ny + 1) (10 + 10)(10 + 10 + 1)
5 —wy = 5 —99 =111

8. Conclusions: Since neither w; nor w, is less than or equal to w,,s = 78, we cannot
reject the null hypothesis that both alloys exhibit the same mean axial stress.

Wy =

15-4.2 Large-Sample Approximation

When both #n, and n, are moderately large, say, greater than 8, the distribution of w,; can be
well approximated by the normal distribution with mean

n(ny + ny + 1)
Ww, = f

and variance

, mmy(n oy £ 1)
MO 12
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Therefore, for n; and n, > 8, we could use

Wi = b,
ZO = 0-7”’1 (15-8)

as a statistic, and the appropriate critical region is |zo| > zuyn, 2o > Zq, OT 2 < —Zgs
depending on whether the test is a two-tailed, upper-tail, or lower-tail test.

15-4.3 Comparison to the t-Test

In Section 15-3.4 we discussed the comparison of the #-test with the Wilcoxon signed-rank
test. The results for the two-sample problem are identical to the one-sample case. That is,
when the normality assumption is correct, the Wilcoxon rank-sum test is approximately 95%
as efficient as the #-test in large samples. On the other hand, regardless of the form of the dis-
tributions, the Wilcoxon rank-sum test will always be at least 86% as efficient. The efficiency
of the Wilcoxon test relative to the #-test is usually high if the underlying distribution has heav-
ier tails than the normal, because the behavior of the #-test is very dependent on the sample

mean, which is quite unstable in heavy-tailed distributions.

EXERCISES FOR SECTION 15-4

15-28.  An electrical engineer must design a circuit to deliver
the maximum amount of current to a display tube to achieve suf-
ficient image brightness. Within her allowable design constraints,
she has developed two candidate circuits and tests prototypes of
each. The resulting data (in microamperes) are as follows:

Circuit 1:| 251, 255, 258, 257, 250, 251, 254, 250, 248
Circuit 2: | 250, 253, 249, 256, 259, 252, 260, 251

Use the Wilcoxon rank-sum test to test Hy: ju; = ., against the
alternative H;: p; > p,. Use a = 0.025.

15-29. One of the authors travels regularly to Seattle,
Washington. He uses either Delta or Alaska. Flight delays are
sometimes unavoidable, but he would be willing to give most
of his business to the airline with the best on-time arrival
record. The number of minutes that his flight arrived late for
the last six trips on each airline follows. Is there evidence that
either airline has superior on-time arrival performance? Use
o = 0.01 and the Wilcoxon rank-sum test.

Delta: | 13,10, 1, =4, 0, 9 (minutes late)
Alaska: | 15, 8,3, —1, —2, 4 (minutes late)

15-30. The manufacturer of a hot tub is interested in testing
two different heating elements for his product. The element
that produces the maximum heat gain after 15 minutes would
be preferable. He obtains 10 samples of each heating unit and
tests each one. The heat gain after 15 minutes (in °F) follows.

Is there any reason to suspect that one unit is superior to the
other? Use a = 0.05 and the Wilcoxon rank-sum test.

Unit 1:] 25, 27, 29, 31, 30, 26, 24, 32, 33, 38
Unit 2: | 31,33, 32, 35, 34, 29, 38, 35, 37, 30

15-31. Use the normal approximation for the Wilcoxon
rank-sum test for the problem in Exercise 15-28. Assume that
a = 0.05. Find the approximate P-value for this test statistic.

15-32. Use the normal approximation for the Wilcoxon
rank-sum test for the heat gain experiment in Exercise 15-30.
Assume that « = 0.05. What is the approximate P-value for
this test statistic?

15-33. Consider the chemical etch rate data in Exercise 10-21.
Use the Wilcoxon rank-sum test to investigate the claim that
the mean etch rate is the same for both solutions. If « = 0.05,
what are your conclusions?

15-34. Use the Wilcoxon rank-sum test for the pipe deflec-
tion temperature experiment described in Exercise 10-20. If
a = 0.05, what are your conclusions?

15-35. Use the normal approximation for the Wilcoxon
rank-sum test for the problem in Exercise 10-21. Assume that
o = 0.05. Find the approximate P-value for this test.
15-36. Use the normal approximation for the Wilcoxon
rank-sum test for the problem in Exercise 10-20. Assume that
o = 0.05. Find the approximate P-value for this test.
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15-5 NONPARAMETRIC METHODS IN THE ANALYSIS
OF VARIANCE

15-5.1 Kruskal-Wallis Test

The single-factor analysis of variance model developed in Chapter 13 for comparing a
population means is

i=12,...,a

Y;]:M+Tl+€lj{

j=1,2....n (15-9)

In this model, the error terms €;; are assumed to be normally and independently distributed with
mean zero and variance 0. The assumption of normality led directly to the F-test described in
Chapter 13. The Kruskal-Wallis test is a nonparametric alternative to the F-test; it requires only
that the €;; have the same continuous distribution for all factor levelsi = 1,2, ..., a.

Suppose that N = X7, , is the total number of observations. Rank all N observations
from smallest to largest, and assign the smallest observation rank 1, the next smallest
rank 2, . .., and the largest observation rank N. If the null hypothesis

Hy:ipyp = pp =+ =

is true, the N observations come from the same distribution, and all possible assignments of
the N ranks to the @ samples are equally likely, we would expect the ranks 1, 2, . . ., N to be
mixed throughout the a samples. If, however, the null hypothesis H, is false, some samples
will consist of observations having predominantly small ranks, while other samples will con-
sist of observations having predominantly large ranks. Let R;; be the rank of observation Yy,
and let R,. and R;. denote the total and average of the n, ranks in the ith treatment. When the
null hypothesis is true,

N+ 1
2

E(Ry) =

and

_ 1 N+ 1
E(R;.) = n; EIE(RU) = 2
=

The Kruskal-Wallis test statistic measures the degree to which the actual observed average
ranks R;. differ from their expected value (N + 1)/2. If this difference is large, the null
hypothesis H,, is rejected. The test statistic is

12 2 N+ 1)\
) (15-10)

H=—22 S, (& -
N(N+1),§f"’(’ 2
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EXAMPLE 15-7

An alternative computing formula that is occasionally more convenient is

Y iR?.
NN+ 1) A

H —3(N + 1) (15-11)

We would usually prefer Equation 15-11 to Equation 15-10 because it involves the rank totals
rather than the averages.

The null hypothesis H,, should be rejected if the sample data generate a large value for
H. The null distribution for A has been obtained by using the fact that under H,, each pos-
sible assignment of ranks to the a treatments is equally likely. Thus, we could enumerate
all possible assignments and count the number of times each value of A occurs. This has
led to tables of the critical values of H, although most tables are restricted to small sample
sizes n;. In practice, we usually employ the following large-sample approximation.
Whenever H,, is true and either

a=3 and m=6 fori=1,2,3

a>3 and n,=5 fori=1,2,...,a

H has approximately a chi-square distribution with a — 1 degrees of freedom. Since large val-
ues of H imply that H, is false, we will reject H, if the observed value

h= X(zx,afl
The test has approximate significance level a.
Ties in the Kruskal-Wallis Test

When observations are tied, assign an average rank to each of the tied observations. When
there are ties, we should replace the test statistic in Equation 15-11 by

H

a 2
1 { R} NN +1) } (15-12)

:?E"i 4

i=1

where #; is the number of observations in the ith treatment, N is the total number of observa-
tions, and

a n 2
g2— 1 [ go— MV LY } (15-13)

N_ 1 i=1 j=1 v 4

Note that S is just the variance of the ranks. When the number of ties is moderate, there will
be little difference between Equations 15-11 and 15-12 and the simpler form (Equation 15-11)
may be used.

Montgomery (2001) presented data from an experiment in which five different levels of
cotton content in a synthetic fiber were tested to determine whether cotton content has any
effect on fiber tensile strength. The sample data and ranks from this experiment are shown in
Table 15-4. We will apply the Kruskal-Wallis test to these data, using o = 0.01.
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Table 15-4 Data and Ranks for the Tensile Testing Experiment

Percentage
of Cotton 7
15 Yy 7 7 15 11 9
ranks 'y 2.0 2.0 12.5 7.0 4.0 27.5
20 Vo 12 17 12 18 18
ranks 7y 9.5 14.0 9.5 16.5 16.5 66.0
25 V3 14 18 18 19 19
ranks 7y 11.0 16.5 16.5 20.5 20.5 85.0
30 Vi 19 25 22 19 23
ranks Ty 20.5 25.0 23.0 20.5 24.0 113.0
35 Vs 7 10 11 15 11
ranks rs; 2.0 5.0 7.0 12.5 7.0 335

Since there is a fairly large number of ties, we use Equation 15-12 as the test statistic.
From Equation 15-13 we find

1 a N(N + 1)2}
2 _ - 2 VMY
* N—1 [iz;jlry 4
1 25(26)?
2 {5510 -
= 53.54

and the test statistic is

1[ & NN+ 1)
h=—5 P
S Lij=1 " 4
S 5245.7 25(26)2
© 53.54 ' 4
= 19.06

Since 1 > X3, 14 = 13.28, we would reject the null hypothesis and conclude that treatments
differ. This same conclusion is given by the usual analysis of variance F-test.

15-5.2 Rank Transformation

The procedure used in the previous section whereby the observations are replaced by their
ranks is called the rank transformation. It is a very powerful and widely useful technique.
If we were to apply the ordinary F-test to the ranks rather than to the original data, we would
obtain

B H/(a — 1)
" (N—1-H)/N - a)

as the test statistic. Note that as the Kruskal-Wallis statistic H increases or decreases, F, also
increases or decreases. Now, since the distribution of F| is approximated by the F-distribution,



592

CHAPTER 15 NONPARAMETRIC STATISTICS

the Kruskal-Wallis test is approximately equivalent to applying the usual analysis of variance
to the ranks.

The rank transformation has wide applicability in experimental design problems for which
no nonparametric alternative to the analysis of variance exists. If the data are ranked and the or-
dinary F-test is applied, an approximate procedure results, but one that has good statistical
properties. When we are concerned about the normality assumption or the effect of outliers or
“wild” values, we recommend that the usual analysis of variance be performed on both the
original data and the ranks. When both procedures give similar results, the analysis of variance
assumptions are probably satisfied reasonably well, and the standard analysis is satisfactory.
When the two procedures differ, the rank transformation should be preferred since it is less
likely to be distorted by nonnormality and unusual observations. In such cases, the experi-
menter may want to investigate the use of transformations for nonnormality and examine the
data and the experimental procedure to determine whether outliers are present and why they

have occurred.

EXERCISES FOR SECTION 15-5

15-37. Montgomery (2001) presented the results of an ex-
periment to compare four different mixing techniques on the
tensile strength of portland cement. The results are shown in
the following table. Is there any indication that mixing tech-
nique affects the strength? Use a = 0.05.

Mixing
Technique Tensile Strength (Ib/in.?)
1 3129 3000 2865 2890
2 3200 3000 2975 3150
3 2800 2900 2985 3050
4 2600 2700 2600 2765
15-38.  An article in the Quality Control Handbook, 3rd edi-

tion (McGraw-Hill, 1962) presents the results of an experiment
performed to investigate the effect of three different conditioning
methods on the breaking strength of cement briquettes. The data
are shown in the following table. Using a = 0.05, is there any
indication that conditioning method affects breaking strength?

Conditioning
Method Breaking Strength (Ib/in.?)
1 553 550 568 541 537
553 599 579 545 540
3 492 530 528 510 571
15-39. In Statistics for Research (John Wiley & Sons,

1983), S. Dowdy and S. Wearden presented the results of an
experiment to measure the performance of hand-held chain
saws. The experimenters measured the kickback angle
through which the saw is deflected when it begins to cut a
3-inch stock synthetic board. Shown in the following table are

deflection angles for five saws chosen at random from each of
four different manufacturers. Is there any evidence that the
manufacturers’ products differ with respect to kickback angle?
Use a = 0.01.

Manufacturer Kickback Angle
A 42 17 24 39 43
B 28 50 44 32 61
C 57 45 48 41 54
D 29 40 22 34 30

15-40. Consider the data in Exercise 13-2. Use the
Kruskal-Wallis procedure with o = 0.05 to test for differ-
ences between mean uniformity at the three different gas flow
rates.

15-41. Find the approximate P-value for the test statistic
computed in Exercise 15-37.
15-42. Find the approximate P-value for the test statistic
computed in Exercise 15-40.

Supplemental Exercises

15-43. The surface finish of 10 metal parts produced in a
grinding process is as follows: (in microinches): 10.32, 9.68,
9.92, 10.10, 10.20, 9.87, 10.14, 9.74, 9.80, 10.26. Do the data
support the claim that the median value of surface finish is 10
microinches? Use the sign test with « = 0.05. What is the
P-value for this test?

15-44. Use the normal appoximation for the sign test for
the problem in Exercise 15-43. Find the P-value for this test.
What are your conclusions if & = 0.05?

15-45. Fluoride emissions (in ppm) from a chemical plant
are monitored routinely. The following are 15 observations
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based on air samples taken randomly during one month of pro-
duction: 7, 3,4,2,5,6,9,8,7,3,4,4, 3,2, 6. Can you claim
that the median fluoride impurity level is less than 6 ppm?
State and test the appropriate hypotheses using the sign test
with a = 0.05. What is the P-value for this test?

15-46. Use the normal approximation for the sign test for
the problem in Exercise 15-45. What is the P-value for this
test?

15-47. Consider the data in Exercise 10-42. Use the sign
test with o = 0.05 to determine whether there is a difference
in median impurity readings between the two analytical
tests.

15-48. Consider the data in Exercise 15-43. Use the
Wilcoxon signed-rank test for this problem with o = 0.05.
What hypotheses are being tested in this problem?

15-49. Consider the data in Exercise 15-45. Use the
Wilcoxon signed-rank test for this problem with a = 0.05.
What conclusions can you draw? Does the hypothesis you are
testing now differ from the one tested originally in Exercise
15-45?

15-50. Use the Wilcoxon signed-rank test with « = 0.05 for
the diet-modification experiment described in Exercise 10-41.
State carefully the conclusions that you can draw from this
experiment.

15-51. Use the Wilcoxon rank-sum test with « = 0.01 for
the fuel-economy study described in Exercise 10-83. What
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conclusions can you draw about the difference in mean
mileage performance for the two vehicles in this study?

15-52. Use the large-sample approximation for the Wilcoxon
rank-sum test for the fuel-economy data in Exercise 10-83. What
conclusions can you draw about the difference in means if
a = 0.01? Find the P-value for this test.

15-53. Use the Wilcoxon rank-sum test with o = 0.025 for
the fill-capability experiment described in Exercise 10-85.
What conclusions can you draw about the capability of the two
fillers?

15-54. Use the large-sample approximation for the
Wilcoxon rank-sum test with o = 0.025 for the fill-capability
experiment described in Exercise 10-85. Find the P-value for
this test. What conclusions can you draw?

15-55. Consider the contact resistance experiment in
Exercise 13-31. Use the Kruskal-Wallis test to test for differ-
ences in mean contact resistance among the three alloys. If a =
0.01, what are your conclusions? Find the P-value for this test.
15-56. Consider the experiment described in Exercise 13-28.
Use the Kruskal-Wallis test for this experiment with « = 0.05.
What conclusions would you draw? Find the P-value for
this test.

15-57. Consider the bread quality experiment in Exercise
13-35. Use the Kruskal-Wallis test with a = 0.01 to analyze the
data from this experiment. Find the P-value for this test. What
conclusions can you draw?

MIND-EXPANDING EXERCISES

15-58. For the large-sample approximation to the
Wilcoxon signed-rank test, derive the mean and stan-
dard deviation of the test statistic used in the procedure.

15-59. Testing for Trends. A turbocharger wheel is
manufactured using an investment-casting process. The
shaft fits into the wheel opening, and this wheel opening
is a critical dimension. As wheel wax patterns are formed,
the hard tool producing the wax patterns wears. This may
cause growth in the wheel-opening dimension. Ten
wheel-opening measurements, in time order of produc-
tion, are 4.00 (millimeters), 4.02, 4.03, 4.01, 4.00, 4.03,
4.04, 4.02, 4.03, 4.03.

(a) Suppose that p is the probability that observation
X, s exceeds observation X;. If there is no upward or
downward trend, X;, 5 is no more or less likely to ex-
ceed X; or lie below X;. What is the value of p?

(b) Let V be the number of values of i for which
X;+5 > X If there is no upward or downward trend

in the measurements, what is the probability distri-
bution of V?

(c) Use the data above and the results of parts (a) and
(b) to test H,: there is no trend, versus H;: there is
upward trend. Use o = 0.05.

Note that this test is a modification of the sign test. It

was developed by Cox and Stuart.

15-60. Consider the Wilcoxon signed-rank test, and

suppose that n = 5. Assume that H;: i = p is true.

(a) How many different sequences of signed ranks are
possible? Enumerate these sequences.

(b) How many different values of W* are there? Find
the probability associated with each value of W',

(c) Suppose that we define the critical region of the test
to be to reject Hy if w* > w* and w* = 13. What is
the approximate « level of this test?

(d) Does this exercise show how the critical values for the
Wilcoxon signed-rank test were developed? Explain.
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IMPORTANT TERMS AND CONCEPTS
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