Statistical Quality

Control

CHAPTER OUTLINE
16-1 QUALITY IMPROVEMENT 166 CONTROL CHARTS FOR

AND STATISTICS INDIVIDUAL MEASUREMENTS
16-2  STATISTICAL QUALITY 167 PROCESS CAPABILITY

CONTROL 16-8 ATTRIBUTE CONTROL
16-3  STATISTICAL PROCESS CHARTS

CONTROL 16-8.1 P Chart (Control Chart for
16-4 INTRODUCTION TO Proportions)

CONTROL CHARTS

16-5

16-4.1 Basic Principles

16-4.2 Design of a Control
Chart

16-4.3 Rational Subgroups

16-4.4 Analysis of Patterns on
Control Charts

X AND R OR S CONTROL
CHARTS

16-9

16-10

16-11

16-12

16-8.2 U Chart (Control Chart for
Defects per Unit)

CONTROL CHART
PERFORMANCE

CUMULATIVE SUM CONTROL
CHART

OTHER SPC PROBLEM-SOLVING
TOOLS

IMPLEMENTING SPC

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
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7. Calculate the ARL performance for a Shewhart control chart
8. Construct and interpret a cumulative sum control chart

9. Use other statistical process control problem-solving tools

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

16-1 QUALITY IMPROVEMENT AND STATISTICS

The quality of products and services has become a major decision factor in most businesses
today. Regardless of whether the consumer is an individual, a corporation, a military defense
program, or a retail store, when the consumer is making purchase decisions, he or she is
likely to consider quality of equal importance to cost and schedule. Consequently, quality
improvement has become a major concern to many U.S. corporations. This chapter is about
statistical quality control, a collection of tools that are essential in quality-improvement
activities.

Quality means fitness for use. For example, you or | may purchase automobiles that we
expect to be free of manufacturing defects and that should provide reliable and economical
transportation, a retailer buys finished goods with the expectation that they are properly pack-
aged and arranged for easy storage and display, or a manufacturer buys raw material and
expects to process it with no rework or scrap. In other words, all consumers expect that the
products and services they buy will meet their requirements. Those requirements define
fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and
quality of conformance. By quality of design we mean the different grades or levels of
performance, reliability, serviceability, and function that are the result of deliberate engi-
neering and management decisions. By quality of conformance, we mean the systematic re-
duction of variability and elimination of defects until every unit produced is identical and
defect-free.

Some confusion exists in our society about quality improvement; some people still think that
it means gold-plating a product or spending more money to develop a product or process. This
thinking is wrong. Quality improvement means the systematic elimination of waste. Examples
of waste include scrap and rework in manufacturing, inspection and testing, errors on documents
(such as engineering drawings, checks, purchase orders, and plans), customer complaint hotlines,
warranty costs, and the time required to do things over again that could have been done right the
first time. A successful quality-improvement effort can eliminate much of this waste and lead to
lower costs, higher productivity, increased customer satisfaction, increased business reputation,
higher market share, and ultimately higher profits for the company.

Statistical methods play a vital role in quality improvement. Some applications are out-
lined below:

1. In product design and development, statistical methods, including designed exper-
iments, can be used to compare different materials, components, or ingredients, and
to help determine both system and component tolerances. This application can sig-
nificantly lower development costs and reduce development time.
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2. Statistical methods can be used to determine the capability of a manufacturing
process. Statistical process control can be used to systematically improve a process
by reducing variability.

3. Experimental design methods can be used to investigate improvements in the
process. These improvements can lead to higher yields and lower manufacturing
costs.

4. Life testing provides reliability and other performance data about the product. This
can lead to new and improved designs and products that have longer useful lives and
lower operating and maintenance costs.

Some of these applications have been illustrated in earlier chapters of this book. It is
essential that engineers, scientists, and managers have an in-depth understanding of these
statistical tools in any industry or business that wants to be a high-quality, low-cost pro-
ducer. In this chapter we provide an introduction to the basic methods of statistical quality
control that, along with experimental design, form the basis of a successful quality-
improvement effort.

16-2 STATISTICAL QUALITY CONTROL

The field of statistical quality control can be broadly defined as those statistical and engineer-
ing methods that are used in measuring, monitoring, controlling, and improving quality.
Statistical quality control is a field that dates back to the 1920s. Dr. Walter A. Shewhart of the
Bell Telephone Laboratories was one of the early pioneers of the field. In 1924 he wrote a
memorandum showing a modern control chart, one of the basic tools of statistical process
control. Harold F. Dodge and Harry G. Romig, two other Bell System employees, provided
much of the leadership in the development of statistically based sampling and inspection
methods. The work of these three men forms much of the basis of the modern field of statis-
tical quality control. World War Il saw the widespread introduction of these methods to U.S.
industry. Dr. W. Edwards Deming and Dr. Joseph M. Juran have been instrumental in spread-
ing statistical quality-control methods since World War I1.

The Japanese have been particularly successful in deploying statistical quality-control
methods and have used statistical methods to gain significant advantage over their
competitors. In the 1970s American industry suffered extensively from Japanese (and other
foreign) competition; that has led, in turn, to renewed interest in statistical quality-control
methods in the United States. Much of this interest focuses on statistical process control
and experimental design. Many U.S. companies have begun extensive programs to
implement these methods in their manufacturing, engineering, and other business
organizations.

16-3 STATISTICAL PROCESS CONTROL

It is impractical to inspect quality into a product; the product must be built right the first
time. The manufacturing process must therefore be stable or repeatable and capable of op-
erating with little variability around the target or nominal dimension. Online statistical
process control is a powerful tool for achieving process stability and improving capability
through the reduction of variability.
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It is customary to think of statistical process control (SPC) as a set of problem-solving
tools that may be applied to any process. The major tools of SPC* are
Histogram
Pareto chart
Cause-and-effect diagram
Defect-concentration diagram
Control chart
Scatter diagram
7. Check sheet

AU o

Although these tools are an important part of SPC, they comprise only the technical aspect
of the subject. An equally important element of SPC is attitude—a desire of all individu-
als in the organization for continuous improvement in quality and productivity through the
systematic reduction of variability. The control chart is the most powerful of the SPC
tools.

16-4 INTRODUCTION TO CONTROL CHARTS

16-4.1 Basic Principles

In any production process, regardless of how well-designed or carefully maintained it is, a
certain amount of inherent or natural variability will always exist. This natural variability or
“background noise” is the cumulative effect of many small, essentially unavoidable causes.
When the background noise in a process is relatively small, we usually consider it an accept-
able level of process performance. In the framework of statistical quality control, this natural
variability is often called a “stable system of chance causes.” A process that is operating with
only chance causes of variation present is said to be in statistical control. In other words, the
chance causes are an inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly ad-
justed machines, operator errors, or defective raw materials. Such variability is generally large
when compared to the background noise, and it usually represents an unacceptable level of
process performance. We refer to these sources of variability that are not part of the chance
cause pattern as assignable causes. A process that is operating in the presence of assignable
causes is said to be out of control.”

Production processes will often operate in the in-control state, producing acceptable
product for relatively long periods of time. Occasionally, however, assignable causes will
occur, seemingly at random, resulting in a “shift” to an out-of-control state where a large pro-
portion of the process output does not conform to requirements. A major objective of statisti-
cal process control is to quickly detect the occurrence of assignable causes or process shifts
so that investigation of the process and corrective action may be undertaken before many

* Some prefer to include the experimental design methods discussed previously as part of the SPC toolkit. We did not
do so, because we think of SPC as an online approach to quality improvement using techniques founded on passive
observation of the process, while design of experiments is an active approach in which deliberate changes are made
to the process variables. As such, designed experiments are often referred to as offline quality control.

"The terminology chance and assignable causes was developed by Dr. Walter A. Shewhart. Today, some writers use
common cause instead of chance cause and special cause instead of assignable cause.
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nonconforming units are manufactured. The control chart is an online process-monitoring
technique widely used for this purpose.

Recall the following from Chapter 1. Figure 1-10 illustrates that adjustments to common
causes of variation increase the variation of a process whereas Fig. 1-11 illustrates that actions
should be taken in response to assignable causes of variation. Control charts may also be used to
estimate the parameters of a production process and, through this information, to determine the
capability of a process to meet specifications. The control chart can also provide information
that is useful in improving the process. Finally, remember that the eventual goal of statistical
process control is the elimination of variability in the process. Although it may not be possible
to eliminate variability completely, the control chart helps reduce it as much as possible.

A typical control chart is shown in Fig. 16-1, which is a graphical display of a quality char-
acteristic that has been measured or computed from a sample versus the sample number or time.
Often, the samples are selected at periodic intervals such as every hour. The chart contains a cen-
ter line (CL) that represents the average value of the quality characteristic corresponding to the
in-control state. (That is, only chance causes are present.) Two other horizontal lines, called the
upper control limit (UCL) and the lower control limit (LCL), are also shown on the chart. These
control limits are chosen so that if the process is in control, nearly all of the sample points will
fall between them. In general, as long as the points plot within the control limits, the process is
assumed to be in control, and no action is necessary. However, a point that plots outside of the
control limits is interpreted as evidence that the process is out of control, and investigation and
corrective action are required to find and eliminate the assignable cause or causes responsible for
this behavior. The sample points on the control chart are usually connected with straight-line
segments so that it is easier to visualize how the sequence of points has evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or non-
random manner, this is an indication that the process is out of control. For example, if 18 of
the last 20 points plotted above the center line but below the upper control limit and only two
of these points plotted below the center line but above the lower control limit, we would be
very suspicious that something was wrong. If the process is in control, all the plotted points
should have an essentially random pattern. Methods designed to find sequences or nonrandom
patterns can be applied to control charts as an aid in detecting out-of-control conditions. A par-
ticular nonrandom pattern usually appears on a control chart for a reason, and if that reason
can be found and eliminated, process performance can be improved.

There is a close connection between control charts and hypothesis testing. Essentially, the
control chart is a test of the hypothesis that the process is in a state of statistical control. A
point plotting within the control limits is equivalent to failing to reject the hypothesis of sta-
tistical control, and a point plotting outside the control limits is equivalent to rejecting the hy-
pothesis of statistical control.
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We give a general model for a control chart. Let /7 be a sample statistic that measures some
quality characteristic of interest, and suppose that the mean of W is ., and the standard deviation
of Wis a,.* Then the center line, the upper control limit, and the lower control limit become

CL = py
LCL = wy — koy (16-1)

where k is the “distance” of the control limits from the center line, expressed in standard
deviation units. A common choice is k£ = 3. This general theory of control charts was first pro-
posed by Dr. Walter A. Shewhart, and control charts developed according to these principles
are often called Shewhart control charts.

The control chart is a device for describing exactly what is meant by statistical control; as
such, it may be used in a variety of ways. In many applications, it is used for online process
monitoring. That is, sample data are collected and used to construct the control chart, and if
the sample values of x (say) fall within the control limits and do not exhibit any systematic
pattern, we say the process is in control at the level indicated by the chart. Note that we may
be interested here in determining both whether the past data came from a process that was in
control and whether future samples from this process indicate statistical control.

The most important use of a control chart is to improve the process. We have found that,
generally

1. Most processes do not operate in a state of statistical control.

2. Consequently, the routine and attentive use of control charts will identify assignable
causes. If these causes can be eliminated from the process, variability will be reduced
and the process will be improved.

This process-improvement activity using the control chart is illustrated in Fig. 16-2. Notice that:

*Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., o)), not the standard
deviation of the quality characteristic.
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3. The control chart will only detect assignable causes. Management, operator, and en-
gineering action will usually be necessary to eliminate the assignable cause. An ac-
tion plan for responding to control chart signals is vital.

In identifying and eliminating assignable causes, it is important to find the underlying root
cause Of the problem and to attack it. A cosmetic solution will not result in any real, long-term
process improvement. Developing an effective system for corrective action is an essential
component of an effective SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the mean,
standard deviation, and fraction nonconforming or fallout. These estimates may then be used
to determine the capability of the process to produce acceptable products. Such process
capability studies have considerable impact on many management decision problems that oc-
cur over the product cycle, including make-or-buy decisions, plant and process improvements
that reduce process variability, and contractual agreements with customers or suppliers re-
garding product quality.

Control charts may be classified into two general types. Many quality characteristics can
be measured and expressed as numbers on some continuous scale of measurement. In such
cases, it is convenient to describe the quality characteristic with a measure of central tendency
and a measure of variability. Control charts for central tendency and variability are collec-
tively called variables control charts. The X chart is the most widely used chart for moni-
toring central tendency, whereas charts based on either the sample range or the sample stan-
dard deviation are used to control process variability. Many quality characteristics are not
measured on a continuous scale or even a quantitative scale. In these cases, we may judge
each unit of product as either conforming or nonconforming on the basis of whether or not it
possesses certain attributes, or we may count the number of nonconformities (defects)
appearing on a unit of product. Control charts for such quality characteristics are called
attributes control charts.

Control charts have had a long history of use in industry. There are at least five reasons
for their popularity:

1. Control charts are a proven technique for improving productivity. A successful
control chart program will reduce scrap and rework, which are the primary produc-
tivity Killers in any operation. If you reduce scrap and rework, productivity increases,
cost decreases, and production capacity (measured in the number of good parts per
hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the
process in control, which is consistent with the “do it right the first time” philosophy.
It is never cheaper to sort out the “good” units from the “bad” later on than it is to
build them correctly initially. If you do not have effective process control, you are
paying someone to make a nonconforming product.

3. Control charts prevent unnecessary process adjustments. A control chart can dis-
tinguish between background noise and abnormal variation; no other device, including
a human operator, is as effective in making this distinction. If process operators adjust
the process based on periodic tests unrelated to a control chart program, they will often
overreact to the background noise and make unneeded adjustments. These unnecessary
adjustments can result in a deterioration of process performance. In other words, the
control chart is consistent with the “if it isn’t broken, don’t fix it” philosophy.

4. Control charts provide diagnostic information. Frequently, the pattern of points
on the control chart will contain information that is of diagnostic value to an
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experienced operator or engineer. This information allows the operator to implement
a change in the process that will improve its performance.

5. Control charts provide information about process capability. The control chart
provides information about the value of important process parameters and their sta-
bility over time. This allows an estimate of process capability to be made. This in-
formation is of tremendous use to product and process designers.

Control charts are among the most effective management control tools, and they are as
important as cost controls and material controls. Modern computer technology has made it
easy to implement control charts in any type of process, because data collection and analysis
can be performed on a microcomputer or a local area network terminal in realtime, online at
the work center.

16-4.2 Design of a Control Chart

Figure 16-3 X con-
trol chart for piston
ring diameter.

To illustrate these ideas, we give a simplified example of a control chart. In manufacturing au-
tomobile engine piston rings, the inside diameter of the rings is a critical quality characteris-
tic. The process mean inside ring diameter is 74 millimeters, and it is known that the standard
deviation of ring diameter is 0.01 millimeters. A control chart for average ring diameter is
shown in Fig. 16-3. Every hour a random sample of five rings is taken, the average ring di-
ameter of the sample (say x) is computed, and x is plotted on the chart. Because this control
chart utilizes the sample mean X to monitor the process mean, it is usually called an X con-
trol chart. Note that all the points fall within the control limits, so the chart indicates that the
process is in statistical control.

Consider how the control limits were determined. The process average is 74 millimeters,
and the process standard deviation is o = 0.01 millimeters. Now if samples of size n = 5 are
taken, the standard deviation of the sample average X is

o 0.01
v=—==—= = 0.0045
X"\ B

Therefore, if the process is in control with a mean diameter of 74 millimeters, by using
the central limit theorem to assume that X is approximately normally distributed, we
would expect approximately 100(1 — «)% of the sample mean diameters X to fall between
74 + z,,,(0.0045) and 74 — z,,,(0.0045). As discussed above, we customarily choose the
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constant z,, , to be 3, so the upper and lower control limits become
UCL = 74 + 3(0.0045) = 74.0135
and
LCL = 74 — 3(0.0045) = 73.9865

as shown on the control chart. These are the 3-sigma control limits referred to above. Note that
the use of 3-sigma limits implies that « = 0.0027; that is, the probability that the point plots
outside the control limits when the process is in control is 0.0027. The width of the control
limits is inversely related to the sample size » for a given multiple of sigma. Choosing the con-
trol limits is equivalent to setting up the critical region for testing the hypothesis

HO:M =74
Hl:M * 74

where o = 0.01 is known. Essentially, the control chart tests this hypothesis repeatedly at dif-
ferent points in time.

In designing a control chart, we must specify both the sample size to use and the fre-
quency of sampling. In general, larger samples will make it easier to detect small shifts in the
process. When choosing the sample size, we must keep in mind the size of the shift that we are
trying to detect. If we are interested in detecting a relatively large process shift, we use smaller
sample sizes than those that would be employed if the shift of interest were relatively small.

We must also determine the frequency of sampling. The most desirable situation from the
point of view of detecting shifts would be to take large samples very frequently; however, this is
usually not economically feasible. The general problem is one of allocating sampling effort. That
is, either we take small samples at short intervals or larger samples at longer intervals. Current in-
dustry practice tends to favor smaller, more frequent samples, particularly in high-volume man-
ufacturing processes or where a great many types of assignable causes can occur. Furthermore,
as automatic sensing and measurement technology develops, it is becoming possible to greatly
increase frequencies. Ultimately, every unit can be tested as it is manufactured. This capability
will not eliminate the need for control charts because the test system will not prevent defects. The
increased data will increase the effectiveness of process control and improve quality.

16-4.3 Rational Subgroups

A fundamental idea in the use of control charts is to collect sample data according to what
Shewhart called the rational subgroup concept. Generally, this means that subgroups or sam-
ples should be selected so that to the extent possible, the variability of the observations within
a subgroup should include all the chance or natural variability and exclude the assignable
variability. Then, the control limits will represent bounds for all the chance variability and not
the assignable variability. Consequently, assignable causes will tend to generate points that are
outside of the control limits, while chance variability will tend to generate points that are
within the control limits.

When control charts are applied to production processes, the time order of production is a
logical basis for rational subgrouping. Even though time order is preserved, it is still possible
to form subgroups erroneously. If some of the observations in the subgroup are taken at the end
of one 8-hour shift and the remaining observations are taken at the start of the next 8-hour shift,
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any differences between shifts might not be detected. Time order is frequently a good basis for
forming subgroups because it allows us to detect assignable causes that occur over time.

Two general approaches to constructing rational subgroups are used. In the first ap-
proach, each subgroup consists of units that were produced at the same time (or as closely to-
gether as possible). This approach is used when the primary purpose of the control chart is to
detect process shifts. It minimizes variability due to assignable causes within a sample, and it
maximizes variability between samples if assignable causes are present. It also provides bet-
ter estimates of the standard deviation of the process in the case of variables control charts.
This approach to rational subgrouping essentially gives a “snapshot” of the process at each
point in time where a sample is collected.

In the second approach, each sample consists of units of product that are representative of
all units that have been produced since the last sample was taken. Essentially, each subgroup
is a random sample of all process output over the sampling interval. This method of rational
subgrouping is often used when the control chart is employed to make decisions about the ac-
ceptance of all units of product that have been produced since the last sample. In fact, if the
process shifts to an out-of-control state and then back in control again between samples, it is
sometimes argued that the first method of rational subgrouping defined above will be ineffec-
tive against these types of shifts, and so the second method must be used.

When the rational subgroup is a random sample of all units produced over the sampling
interval, considerable care must be taken in interpreting the control charts. If the process mean
drifts between several levels during the interval between samples, the range of observations
within the sample may consequently be relatively large. It is the within-sample variability that
determines the width of the control limits on an X chart, so this practice will result in wider
limits on the X chart. This makes it harder to detect shifts in the mean. In fact, we can often
make any process appear to be in statistical control just by stretching out the interval between
observations in the sample. It is also possible for shifts in the process average to cause points
on a control chart for the range or standard deviation to plot out of control, even though no
shift in process variability has taken place.

There are other bases for forming rational subgroups. For example, suppose a process con-
sists of several machines that pool their output into a common stream. If we sample from this
common stream of output, it will be very difficult to detect whether or not some of the machines
are out of control. A logical approach to rational subgrouping here is to apply control chart tech-
niques to the output for each individual machine. Sometimes this concept needs to be applied to
different heads on the same machine, different workstations, different operators, and so forth.

The rational subgroup concept is very important. The proper selection of samples re-
quires careful consideration of the process, with the objective of obtaining as much useful in-
formation as possible from the control chart analysis.

16-4.4 Analysis of Patterns on Control Charts

A control chart may indicate an out-of-control condition either when one or more points fall be-
yond the control limits, or when the plotted points exhibit some nonrandom pattern of behavior.
For example, consider the X chart shown in Fig. 16-4. Although all 25 points fall within the con-
trol limits, the points do not indicate statistical control because their pattern is very nonrandom
in appearance. Specifically, we note that 19 of the 25 points plot below the center line, while
only 6 of them plot above. If the points are truly random, we should expect a more even distri-
bution of them above and below the center line. We also observe that following the fourth point,
five points in a row increase in magnitude. This arrangement of points is called a run. Since the
observations are increasing, we could call it a run up; similarly, a sequence of decreasing points
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is called a run down. This control chart has an unusually long run up (beginning with the fourth
point) and an unusually long run down (beginning with the eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addition to
runs up and runs down, we could define the types of observations as those above and below the
center line, respectively, so two points in a row above the center line would be a run of length 2.

A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as a signal
of an out-of-control condition. For example, eight consecutive points on one side of the cen-
ter line will indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart, other
types of patterns may also indicate an out-of-control condition. For example, consider the X
chart in Fig. 16-5. Note that the plotted sample averages exhibit a cyclic behavior, yet they all
fall within the control limits. Such a pattern may indicate a problem with the process, such as
operator fatigue, raw material deliveries, and heat or stress buildup. The yield may be im-
proved by eliminating or reducing the sources of variability causing this cyclic behavior
(see Fig. 16-6). In Fig. 16-6, LSL and USL denote the lower and upper specification limits of
the process. These limits represent bounds within which acceptable product must fall and they
are often based on customer requirements.

The problem is one of pattern recognition, that is, recognizing systematic or nonrandom
patterns on the control chart and identifying the reason for this behavior. The ability to interpret
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a particular pattern in terms of assignable causes requires experience and knowledge of the
process. That is, we must not only know the statistical principles of control charts, but we
must also have a good understanding of the process.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting non-
random patterns on control charts. Specifically, the Western Electric rules would conclude
that the process is out of control if either

1. One point plots outside 3-sigma control limits.
2. Two out of three consecutive points plot beyond a 2-sigma limit.

3. Four out of five consecutive points plot at a distance of 1-sigma or beyond from the
center line.

4. Eight consecutive points plot on one side of the center line.

We have found these rules very effective in practice for enhancing the sensitivity of control
charts. Rules 2 and 3 apply to one side of the center line at a time. That is, a point above the
upper 2-sigma limit followed immediately by a point below the lower 2-sigma limit would not
signal an out-of-control alarm.

Figure 16-7 shows an X control chart for the piston ring process with the 1-sigma,
2-sigma, and 3-sigma limits used in the Western Electric procedure. Notice that these inner
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limits (sometimes called warning limits) partition the control chart into three zones A, B, and
C on each side of the center line. Consequently, the Western Electric rules are sometimes
called the run rules for control charts. Notice that the last four points fall in zone B or beyond.
Thus, since four of five consecutive points exceed the 1-sigma limit, the Western Electric
procedure will conclude that the pattern is nonrandom and the process is out of control.

16-5 X AND R OR S CONTROL CHARTS

When dealing with a quality characteristic that can be expressed as a measurement, it is cus-
tomary to monitor both the mean value of the quality characteristic and its variability. Control
over the average quality is exercised by the control chart for averages, usually called the X
chart. Process variability can be controlled by either a range chart (R chart) or a standard de-
viation chart (S chart), depending on how the population standard deviation is estimated.

Suppose that the process mean and standard deviation . and o are known and that we can
assume that the quality characteristic has a normal distribution. Consider the X chart. As dis-
cussed previously, we can use w as the center line for the control chart, and we can place the
upper and lower 3-sigma limits at

UCL = n + 30/Vn

LCL = . — 36/Vn
CL = (16-2)

When the parameters . and o are unknown, we usually estimate them on the basis of
preliminary samples, taken when the process is thought to be in control. We recommend the
use of at least 20 to 25 preliminary samples. Suppose m preliminary samples are available,
each of size n. Typically, n will be 4, 5, or 6; these relatively small sample sizes are widely
used and often arise from the construction of rational subgroups. Let the sample mean for the
ith sample be X;. Then we estimate the mean of the population, ., by the grand mean

3

Kol

(16-3)

S
-

Thus, we may take X as the center line on the X control chart.

We may estimate o from either the standard deviation or the range of the observations
within each sample. The sample size is relatively small, so there is little loss in efficiency in
estimating o from the sample ranges.

The relationship between the range R of a sample from a normal population with known
parameters and the standard deviation of that population is needed. Since R is a random
variable, the quantity W = R/ao, called the relative range, is also a random variable. The
parameters of the distribution of 17 have been determined for any sample size n. The mean of
the distribution of W is called d,, and a table of d, for various = is given in Appendix Table X.
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The standard deviation of W is called d;. Because R = oW

Lr = dro o = dio

(16-4)
Let R; be the range of the ith sample, and let

S

|
Il

R, (16-5)

NI

be the average range. Then R is an estimator of w, and from Equation 16-4 an unbiased
estimator of o is

R
6= — 16-6
6= (16-6)
Therefore, we may use as our upper and lower control limits for the X chart
UCL=X+-°"R 1CL=X-->_R (16-7)
do\/n d,\/n
Define the constant
Ay = 3 (16-8)
27 ANV

Now, once we have computed the sample values x and 7, the X control chart may be defined
as follows:

The center line and upper and lower control limits for an X control chart are

UCL =X+ A,y CL=X LCL=3X— 4,7 (16-9)

where the constant 4, is tabulated for various sample sizes in Appendix Table X.

The parameters of the R chart may also be easily determined. The center line will obvi-
ously be R. To determine the control limits, we need an estimate of o, the standard deviation

of R. Once again, assuming the process is in control, the distribution of the relative range, W,
will be useful. We may estimate o, from Equation 16-4 as

(16-10)

[ =
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and we would use as the upper and lower control limits on the R chart

UCL—R+3d3R—(1+3"3>R
B d, d,

_ 3dy 3d;\ —
LCL=R-—""R=(1-"")R (16-11)
dy d;

Setting D; = 1 — 3d;/d, and D, = 1 + 3d;/d, leads to the following definition.

The center line and upper and lower control limits for an R chart are
UCL = Dyr Ch =7 LCL = D3r (16-12)

where 7 is the sample average range, and the constants D5 and D, are tabulated for
various sample sizes in Appendix Table X.

The LCL for an R chart can be a negative number. In that case, it is customary to set LCL
to zero. Because the points plotted on an R chart are nonnegative, no points can fall below an
LCL of zero.

When preliminary samples are used to construct limits for control charts, these limits are
customarily treated as trial values. Therefore, the m sample means and ranges should be plotted
on the appropriate charts, and any points that exceed the control limits should be investigated. If
assignable causes for these points are discovered, they should be eliminated and new limits for
the control charts determined. In this way, the process may be eventually brought into statistical
control and its inherent capabilities assessed. Other changes in process centering and dispersion
may then be contemplated. Also, we often study the R chart first because if the process variabil-
ity is not constant over time the control limits calculated for the X chart can be misleading.

Rather than base control charts on ranges, a more modern approach is to calculate the
standard deviation of each subgroup and plot these standard deviations to monitor the process
standard deviation o. This is called an S chart. When an S chart is used, it is common to use
these standard deviations to develop control limits for the X chart. Typically, the sample size
used for subgroups is small (fewer than 10) and in that case there is usually little difference in
the X chart generated from ranges or standard deviations. However, because computer soft-
ware is often used to implement control charts, S charts are quite common. Details to construct
these charts follow.

In Section 7-2.2 on the CD, it was shown that S is a biased estimator of . That is,
E(S) = c,0 where ¢, is a constant that is near, but not equal to, 1. Furthermore, a calculation
similar to the one used for E(S) can derive the standard deviation of the statistic S with the re-
sult V1 — ¢2. Therefore, the center line and three-sigma control limits for S are

LCL =c40 —36V1—¢§ CL=cpo
UCL = ¢4,0 + 30V1 — ¢§ (16-13)
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S Chart

X Control Chart
(from §)

EXAMPLE 16-1

Assume that there are m preliminary samples available, each of size n, and let S; denote the
standard deviation of the ith sample. Define

S, (16-14)

NI

- m
S =
i=1

Because E(S) = ¢,0, an unbiased estimator of o is S/c, That is,

(16-15)

(=}
I

~
o
Iy

A control chart for standard deviations follows.

UCL=§+3C%\/1—C§ CL =5 LCL=§—3Ci4\/1—c§ (16-16)

The LCL for an S chart can be a negative number, in that case, it is customary to set LCL to zero.
When an § chart is used, the estimate for o in Equation 16-15 is commonly used to calculate
the control limits for an X chart. This produces the following control limits for an X chart.

= S
CL=x LCL=5—3
* s C4W

(16-17)

A component part for a jet aircraft engine is manufactured by an investment casting
process. The vane opening on this casting is an important functional parameter of the part.
We will illustrate the use of X and R control charts to assess the statistical stability of this
process. Table 16-1 presents 20 samples of five parts each. The values given in the table
have been coded by using the last three digits of the dimension; that is, 31.6 should be
0.50316 inch.

The guantities x = 33.3 and 7 = 5.8 are shown at the foot of Table 16-1. The value of 4,
for samples of size 5 is 4, = 0.577. Then the trial control limits for the X chart are

X = A7 = 33.32 + (0.577)(5.8) = 33.32 * 3.35
or

UCL = 36.67 LCL = 29.97
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Table 16-1 Vane-Opening Measurements

Sample
Number Xy X, X3 Xy Xs x r s

1 33 29 31 32 33 31.6 4 1.67332
2 33 31 35 37 31 334 6 2.60768
3 35 37 33 34 36 35.0 4 1.58114
4 30 31 33 34 33 32.2 4 1.64317
5 33 34 35 33 34 33.8 2 0.83666
6 38 37 39 40 38 384 3 1.14018
7 30 31 32 34 31 31.6 4 1.51658
8 29 39 38 39 39 36.8 10 4.38178
9 28 33 35 36 43 35.0 15 5.43139
10 38 33 32 35 32 34.0 6 2.54951
11 28 30 28 32 31 29.8 4 1.78885
12 31 35 35 35 34 34.0 4 1.73205
13 27 32 34 35 37 33.0 10 3.80789
14 33 33 35 37 36 34.8 4 1.78885
15 35 37 32 35 39 35.6 7 2.60768
16 33 33 27 31 30 30.8 6 2.48998
17 35 34 34 30 32 33.0 5 2.00000
18 32 33 30 30 33 31.6 3 1.51658
19 25 27 34 27 28 28.2 9 3.42053
20 35 35 36 33 30 33.8 6 2.38747
¥ =33.32 7=58 5 =2.345

For the R chart, the trial control limits are

UCL = Dyr = (2.115)(5.8) = 12.27
LCL = D37 = (0)(5.8) =0

The X and R control charts with these trial control limits are shown in Fig. 16-8. Notice that

samples 6, 8, 11, and 19 are out of control on the X chart and that sample 9 is out of control on the

R chart. (These points are labeled with a “1” because they violate the first Western Electric rule.)

For the S chart, the value of ¢, = 0.94.
Therefore,

35 3(2.345
2NV1-a = 3(23%5) T 004 — 2583

Cs4 0.94

and the trial control limits are

UCL = 2.345 + 2.553 = 4.898
LCL = 2.345 — 2,553 = —0.208

The LCL is set to zero. If s is used to determine the control limits for the X chart,

35 3(2.345)
=3332 £ ————
C4\/I; 094

=1l
I+

=33.32 £ 3.35
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Figure 16-8 The X and R control charts for vane opening.

and this result is nearly the same as from 7. The S chart is shown in Fig. 16-9. Because the con-
trol limits for the X chart calculated from s are nearly the same as from 7, the chart is not shown.

Suppose that all of these assignable causes can be traced to a defective tool in the wax-
molding area. We should discard these five samples and recompute the limits for the X and R
charts. These new revised limits are, for the X chart,

UCL =X + A,7 = 33.21 + (0.577)(5.0) = 36.10
LCL =X — A,7 = 33.21 — (0.577)(5.0) = 30.33
and for the R chart,

UCL = D,7 = (2.115)(5.0) = 10.57
LCL = Dy7 = (0)(5.0) = 0

6
UCL = 4.899 ol
F_S 7
5S84 _ o
%s 3 S=2.345 /\ /.\
Q> 0, o, O e
g‘ % 2 O/ \.—O () \._. ./ \.
S 1 \./'/
o LCL=0.00
0 5 10 15 20

Subgroup
Figure 16-9. The S control chart for vane opening.
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Figure 16-10 The X and R control charts for vane opening, revised limits.

The revised control charts are shown in Fig. 16-10. Notice that we have treated the first
20 preliminary samples as estimation data with which to establish control limits. These lim-
its can now be used to judge the statistical control of future production. As each new sample
becomes available, the values of x and r should be computed and plotted on the control charts.
It may be desirable to revise the limits periodically, even if the process remains stable. The
limits should always be revised when process improvements are made.

Computer Construction of X and R Control Charts

Many computer programs construct X and R control charts. Figures 16-8 and 16-10 show
charts similar to those produced by Minitab for the vane-opening data. This program will
allow the user to select any multiple of sigma as the width of the control limits and use the
Western Electric rules to detect out-of-control points. The program will also prepare a
summary report as in Table 16-2 and exclude subgroups from the calculation of the control
limits.

Table 16-2 Summary Report from Minitab for the Vane-Opening Data

Test Results for Xbar Chart

TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 6 8 11 19

Test Results for R Chart

TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 9
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EXERCISES FOR SECTION 16-5

16-1. An extrusion die is used to produce aluminum rods.
The diameter of the rods is a critical quality characteristic. The
following table shows x and r values for 20 samples of five
rods each. Specifications on the rods are 0.5035 = 0.0010 inch.
The values given are the last three digits of the measurement;
that is, 34.2 is read as 0.50342.

Sample X r
1 34.2 3
2 31.6 4
3 318 4
4 334 5
5 35.0 4
6 321 2
7 32.6 7
8 338 9
9 34.8 10

10 38.6 4
11 354 8
12 34.0 6
13 36.0 4
14 37.2 7
15 35.2 3
16 334 10
17 35.0 4
18 34.4 7
19 33.9 8
20 34.0 4

(@) Using all the data, find trial control limits for X and R
charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify
out-of-control points. If necessary, revise your control
limits, assuming that any samples that plot outside the
control limits can be eliminated.

16-2. Twenty-five samples of size 5 are drawn from a
process at one-hour intervals, and the following data are
obtained:

25
DX = 36275

i=1

25 25
zri = 8.60 Esi = 3.64
i=1 i=1

(a) Find trial control limits for X and R charts.

(b) Repeat part (a) for X and S charts.

16-3. The pull strength of a wire-bonded lead for an inte-
grated circuit monitored. The following table provides data for
20 samples each of size three.

< (a) Use all the data to determine trial control limits for X

and R charts, construct the control limits, and plot the
data.

(b) Use the control limits from part (a) to identify out-of-control
points. If necessary, revise your control limits assuming that
any samples that plot outside of the control limits can be
eliminated.

(c) Repeat parts (a) and (b) for X and S charts.

Sample Number X1 b X3
1 15.4 15.6 15.3
2 15.4 17.1 15.2
3 16.1 16.1 135
4 135 12.5 10.2
5 18.3 16.1 17.0
6 19.2 17.2 19.4
7 14.1 12.4 11.7
8 15.6 13.3 13.6
9 13.9 14.9 15.5

10 18.7 21.2 20.1
11 15.3 13.1 13.7
12 16.6 18.0 18.0
13 17.0 15.2 18.1
14 16.3 16.5 17.7
15 8.4 7.7 8.4
16 11.1 13.8 11.9
17 16.5 17.1 18.5
18 18.0 14.1 15.9
19 17.8 17.3 12.0
20 115 10.8 11.2

16-4. Samples of size n = 6 are collected from a process

every hour. After 20 samples have been collected, we calcu-

late x = 20.0 and 7/d, = 1.4.

(a) Find trial control limits for X and R charts.

(b) If 5/¢c, = 1.5, determine trial control limits for X and S
charts.

16-5. Control charts for X and R are to be set up for an im-
portant quality characteristic. The sample size is» = 5, and x
and » are computed for each of 35 preliminary samples. The
summary data are

w

5 35
x; = 7805 r; = 1200
=1

1

[l
iy

1
(a) Find trial control limits for X and R charts.
(b) Assuming that the process is in control, estimate the
process mean and standard deviation.
16-6. Control charts are to be constructed for samples of size
n = 4,and x and s are computed for each of 20 preliminary sam-
ples as follows:

20

20
DX =4460 > s, = 2716
i=1 i=1
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(a) Determine trial control limits for X and S charts.

(b) Assuming the process is in control, estimate the process
mean and standard deviation.

16-7. The thickness of a metal part is an important qual-

ity parameter. Data on thickness (in inches) are given in the

following table, for 25 samples of five parts each.

(a) Using all the data, find trial control limits for X and R
charts, construct the chart, and plot the data. Is the process
in statistical control?

(b) Repeat part (a) for X and S charts.

(c) Use the trial control limits from part (a) to identify out-of-
control points. List the sample numbers of the out-of-control
points.

16-8. The copper content of a plating bath is measured three

Is\%nxift}:r % X X3 X4 X5 times per day, and the results are reported i_n ppm. The x and r
values for 25 days are shown in the following table:
1 0.0629 0.0636 0.0640 0.0635 0.0640 (8) Using all the data, find trial control limits for X and R charts,
2 0.0630 0.0631 0.0622 0.0625 0.0627 construct the chart, and plot the data. Is the process in
3 0.0628 0.0631 0.0633 0.0633 0.0630 statistical control?
4 0.0634 0.0630 0.0631 0.0632 0.0633 (b) If necessary, revise the control limits computed in part (a),
5 0.0619 0.0628 0.0630 0.0619 0.0625 assuming that any samples that plot outside the control
6 00613 00629 00634 00625 0.0628 limits can be eliminated.
7 0.0630 0.0639 0.0625 0.0629 0.0627 - -
8 0.0628 0.0627 0.0622 0.0625 0.0627 Loy - r L x r
9 0.0623 0.0626 0.0633 0.0630 0.0624 1 545 121 14 701 145
10 0.0631 0.0631 0.0633 0.0631 0.0630 2 539 0.95 15 5.83 137
11 0.0635 0.0630 0.0638 0.0635 0.0633 3 685 143 16 6.35 1.04
12 0.0623 0.0630 0.0630 0.0627 0.0629 4 6.74 1.29 17 6.05 0.83
13 0.0635 0.0631 0.0630 0.0630 0.0630 5 5.83 1.35 18 7.11 1.35
14 0.0645 0.0640 0.0631 0.0640 0.0642 6 7.22 0.88 19 7.32 1.09
15 0.0619 0.0644 0.0632 0.0622 0.0635 7 6.39 0.92 20 5.90 1.22
16 0.0631 0.0627 0.0630 0.0628 0.0629 8 6.50 1.13 21 5.50 0.98
17 0.0616 0.0623 0.0631 0.0620 0.0625 9 7.15 1.25 22 6.32 1.21
18 0.0630 0.0630 0.0626 0.0629 0.0628 10 592 1.05 23 655 076
19 0.0636 0.0631 0.0629 0.0635 0.0634 11 645 098 24 500  1.20
20 0.0640 0.0635 0.0629 0.0635 0.0634 12 538 1.36 25 595  1.19
21 0.0628 0.0625 0.0616 0.0620 0.0623 13 6.03 0.83
22 0.0615 0.0625 0.0619 0.0619 0.0622
23 0.0630 0.0632 0.0630 0.0631 0.0630
24 0.0635 0.0629 0.0635 0.0631 0.0633
25 0.0623 0.0629 0.0630 0.0626 0.0628
16-6 CONTROL CHARTS FOR INDIVIDUAL

MEASUREMENTS

In many situations, the sample size used for process control is » = 1; that is, the sample con-
sists of an individual unit. Some examples of these situations are as follows:

1. Automated inspection and measurement technology is used, and every unit manu-

factured is analyzed.

2. The production rate is very slow, and it is inconvenient to allow sample sizes of n > 1
to accumulate before being analyzed.

3. Repeat measurements on the process differ only because of laboratory or analysis
error, as in many chemical processes.
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Individuals
Control Chart

EXAMPLE 16-2

4. In process plants, such as papermaking, measurements on some parameters such
as coating thickness across the roll will differ very little and produce a standard
deviation that is much too small if the objective is to control coating thickness
along the roll.

In such situations, the individuals control chart is useful. The control chart for individu-
als uses the moving range of two successive observations to estimate the process variability.
The moving range is defined as MR, = |X; — X,_4.

An estimate of o is

MR MR

d, 1128 (16-18)

G =

because d, = 1.128 when two consecutive observations are used to calculate a moving range.
It is also possible to establish a control chart on the moving range using D; and D, for n = 2.
The parameters for these charts are defined as follows.

The center line and upper and lower control limits for a control chart for individuals

are
_ mr _ mr
UCL_X+372_X+3T28
CL =X (16-19)
mr

_ mr o _
LCL =X 3d2—x 31.128

and for a control chart for moving ranges
UCL = Dymr = 3.267mr
CL = mr
LCL = Dgmr = 0

The procedure is illustrated in the following example.

Table 16-3 shows 20 observations on concentration for the output of a chemical process. The
observations are taken at one-hour intervals. If several observations are taken at the same
time, the observed concentration reading will differ only because of measurement error. Since
the measurement error is small, only one observation is taken each hour.

To set up the control chart for individuals, note that the sample average of the 20 concen-
tration readings is x = 99.1 and that the average of the moving ranges of two observations
shown in the last column of Table 16-3 is mr = 2.59. To set up the moving-range chart, we
note that D; = 0and D, = 3.267 for n = 2. Therefore, the moving-range chart has center line
mr = 259, LCL = 0, and UCL = Dymr = (3.267)(2.59) = 8.46. The control chart is shown
as the lower control chart in Fig. 16-11 on page 618. This control chart was constructed by
Minitab. Because no points exceed the upper control limit, we may now set up the control chart
for individual concentration measurements. If a moving range of » = 2 observations is used,
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d, = 1.128. For the data in Table 16-3 we have
2.59

mr
=x+ 3— = d1+3——= .
UCL=Xx+3 4, 99.1 + 3 1128 105.99
CL=x=0991
_ mr 2.59
LCL=Xx—3 d =991 31.128 =0221

The control chart for individual concentration measurements is shown as the upper con-
trol chart in Fig. 16-11. There is no indication of an out-of-control condition.

The chart for individuals can be interpreted much like an ordinary X control chart. A shift
in the process average will result in either a point (or points) outside the control limits, or a
pattern consisting of a run on one side of the center line.

Some care should be exercised in interpreting patterns on the moving-range chart. The
moving ranges are correlated, and this correlation may often induce a pattern of runs or cycles
on the chart. The individual measurements are assumed to be uncorrelated, however, and any
apparent pattern on the individuals’ control chart should be carefully investigated.

The control chart for individuals is very insensitive to small shifts in the process mean.
For example, if the size of the shift in the mean is one standard deviation, the average number
of points to detect this shift is 43.9. This result is shown later in the chapter. While the per-
formance of the control chart for individuals is much better for large shifts, in many situations
the shift of interest is not large and more rapid shift detection is desirable. In these cases, we
recommend the cumulative sum control chart (discussed in Section 16-10) or an exponentially
weighted moving-average chart (Montgomery, 2001).

Table 16-3 Chemical Process Concentration Measurements

Concentration Moving Range
Observation X mr

1 102.0

2 94.8 7.2

3 98.3 35

4 98.4 0.1

5 102.0 3.6

6 98.5 35

7 99.0 0.5

8 97.7 1.3

9 100.0 2.3
10 98.1 1.9
11 101.3 3.2
12 98.7 2.6
13 101.1 24
14 98.4 2.7
15 97.0 1.4
16 96.7 0.3
17 100.3 3.6
18 101.4 1.1
19 97.2 4.2
20 101.0 3.8

x =991 mr = 2.59




618 CHAPTER 16 STATISTICAL QUALITY CONTROL

107
UCL = 105.99
104
2101
©
p=}
hel
=
2 98
95
LCL = 92.21
92
0 4 8 12 16 20
Subgroup
10
UCL = 8.46
8
L]
g
o 6
2
g
Figure 16-11 %D Ario e . N
Control charts for = 2.59 /.\«./'
individuals and the 2 Vs \
moving range (from LCL = S/ * .
. . L]
Minitab) for the o 0000 ¢ e
chemical process 0 4 8 12 6 20
concentration data. Subgroup

Some individuals have suggested that limits narrower than 3-sigma be used on the chart
for individuals to enhance its ability to detect small process shifts. This is a dangerous sug-
gestion, for narrower limits will dramatically increase false alarms such that the charts may be
ignored and become useless. If you are interested in detecting small shifts, use the cumulative
sum or exponentially weighted moving-average control chart referred to on the previous page.

EXERCISES FOR SECTION 16-6

[j 16-9. Twenty successive hardness measurements are made (2) Using all the data, compute trial control limits for indi-
& on ametal alloy, and the data are shown in the following table. vidual observations and moving-range charts. Construct
the chart and plot the data. Determine whether the
process is in statistical control. If not, assume assignable

Observation  Hardness Observation  Hardness causes can be found to eliminate these samples and re-
1 51 11 51 vise the control limits.
2 52 12 57 (b) Estimate the process mean and standard deviation for the
3 54 13 58 in-control process.
4 55 14 50 16-10. In a semiconductor manufacturing process CVD
metal thickness was measured on 30 wafers obtained over ap-
5 55 15 53 - . .
proximately two weeks. Data are shown in the following table.
6 o1 16 52 (a) Using all the data, compute trial control limits for indi-
7 52 17 54 vidual observations and moving-range charts. Construct
8 50 18 50 the chart and plot the data. Determine whether the
9 51 19 56 process is in statistical control. If not, assume assignable
10 56 20 53 causes can be found to eliminate these samples and re-

vise the control limits.




(b) Estimate the process mean and standard deviation for the

in-control process.

Wafer X Wafer X
1 16.8 16 15.4
2 14.9 17 14.3
3 18.3 18 16.1
4 16.5 19 15.8
5 17.1 20 15.9
6 17.4 21 15.2
7 15.9 22 16.7
8 14.4 23 15.2
9 15.0 24 14.7
10 15.7 25 17.9
11 17.1 26 14.8
12 15.9 27 17.0
13 16.4 28 16.2
14 15.8 29 15.6
15 15.4 30 16.3

16-11. The diameter of holes is measured in consecutive
@ order by an automatic sensor. The results of measuring 25

holes are in the following table.

Sample Diameter Sample Diameter
1 9.94 14 9.99
2 9.93 15 10.12
3 10.09 16 9.81
4 9.98 17 9.73
5 10.11 18 10.14
6 9.99 19 9.96
7 10.11 20 10.06
8 9.84 21 10.11
9 9.82 22 9.95

10 10.38 23 9.92
11 9.99 24 10.09
12 10.41 25 9.85
13 10.36
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(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Construct
the control chart and plot the data. Determine whether
the process is in statistical control. If not, assume assigna-
ble causes can be found to eliminate these samples and
revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

16-12. The viscosity of a chemical intermediate is meas-

ured every hour. Twenty samples each of size n = 1, are in the

following table.

Sample Viscosity
1 495
2 491
3 501
4 501
5 512
6 540
7 492
8 504
9 542

10 508
11 493
12 507
13 503
14 475
15 497
16 499
17 468
18 486
19 511
20 487

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Determine
whether the process is in statistical control. If not, assume
assignable causes can be found to eliminate these samples
and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

It is usually necessary to obtain some information about the process capability, that is, the
performance of the process when it is operating in control. Two graphical tools, the toler-
ance chart (or tier chart) and the histogram, are helpful in assessing process capability.

-
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Figure 16-12

Tolerance diagram of

vane openings.

45
USL =40
40 T
[ ] e00 [ ] [ ]
ole
e o L] [ ] [ ]
3 $ .
35 [} l ° (1) l ole [ ole
| l o ol L ] L] l ole
.|. [ ] l ole o'e l ole o0 .|. [}
0 ° [} olo ° o e o
£ | | |
o o eole L ] ole L] L] [}
8 | |
g 30 . ° ° o o ole ®
z N\
S Nominal ole
dimension = 30 ® ole
25
LSL =20
20
1
5 5 10 15 20

Sample number

The tolerance chart for all 20 samples from the vane-manufacturing process is shown in
Fig. 16-12. The specifications on vane opening are 0.5030 = 0.0010 in. In terms of the
coded data, the upper specification limit is USL = 40 and the lower specification limit is
LSL = 20, and these limits are shown on the chart in Fig. 16-12. Each measurement is plot-
ted on the tolerance chart. Measurements from the same subgroup are connected with
lines. The tolerance chart is useful in revealing patterns over time in the individual meas-
urements, or it may show that a particular value of x or » was produced by one or two un-
usual observations in the sample. For example, note the two unusual observations in sam-
ple 9 and the single unusual observation in sample 8. Note also that it is appropriate to plot
the specification limits on the tolerance chart, since it is a chart of individual measure-
ments. It is never appropriate to plot specification limits on a control chart or to use
the specifications in determining the control limits. Specification limits and control lim-
its are unrelated. Finally, note from Fig. 16-12 that the process is running off-center from
the nominal dimension of 30 (or 0.5030 inch).

The histogram for the vane-opening measurements is shown in Fig. 16-13. The observa-
tions from samples 6, 8, 9, 11, and 19 (corresponding to out of-control points on either the X
or R chart) have been deleted from this histogram. The general impression from examining
this histogram is that the process is capable of meeting the specification but that it is running
off-center.

Another way to express process capability is in terms of an index that is defined as
follows.



Figure 16-13
Histogram for vane
opening.
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The process capability ratio (PCR) is

USL — LSL
PCR = ———— (16-20)

The numerator of PCR is the width of the specifications. The limits 3o on either side of the
process mean are sometimes called natural tolerance limits, for these represent limits that an
in-control process should meet with most of the units produced. Consequently, 6¢ is often re-
ferred to as the width of the process. For the vane opening, where our sample size is 5, we
could estimate o as

5.0
2326 2.15

[=}}
Il

IR

Therefore, the PCR is estimated to be

_ USL—LSL 40— 20

PCR - _
66 6(2.15)

1.55

The PCR has a natural interpretation: (1/PCR)100 is just the percentage of the specifica-
tions” width used by the process. Thus, the vane-opening process uses approximately
(1/1.55)100 = 64.5% of the specifications’ width.

Figure 16-14(a) shows a process for which the PCR exceeds unity. Since the process
natural tolerance limits lie inside the specifications, very few defective or nonconform-
ing units will be produced. If PCR = 1, as shown in Fig. 16-14(b), more nonconform-
ing units result. In fact, for a normally distributed process, if PCR = 1, the fraction



622 CHAPTER 16 STATISTICAL QUALITY CONTROL

PCR > 1
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nonconforming is 0.27%, or 2700 parts per million. Finally, when the PCR is less than
unity, as in Fig. 16-14(c), the process is very yield-sensitive and a large number of non-
conforming units will be produced.

The definition of the PCR given in Equation 16-19 implicitly assumes that the process
is centered at the nominal dimension. If the process is running off-center, its actual capa-
bility will be less than indicated by the PCR. It is convenient to think of PCR as a meas-
ure of potential capability, that is, capability with a centered process. If the process is not
centered, a measure of actual capability is often used. This ratio, called PCR,, is defined
below.

PCR,

USL — w p — LSL

PCR; = min
k : 3o 30

(16-21)

In effect, PCR, is a one-sided process capability ratio that is calculated relative to the specifi-
cation limit nearest to the process mean. For the vane-opening process, we find that the
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estimate of the process capability ratio PCR, is

P ClusL —x x — LSL
PCR, = min { P ~
36 36
40 — 33.19 33.19 — 20
=min|———— =106, ——————=204| =1.06
[ 3(2.15) 3(2.15)

Note that if PCR = PCR,, the process is wred at the nominal dimension. Since

ﬁ?}k = 1.06 for the vane-opening process and PCR = 1.55, the process is obviously run-

ning off-center, as was first noted in Figs. 16-14 and 16-17. This off-center operation was ul-
timately traced to an oversized wax tool. Changing the tooling resulted in a substantial im-
provement in the process (Montgomery, 2001).

The fractions of nonconforming output (or fallout) below the lower specification limit and
above the upper specification limit are often of interest. Suppose that the output from a normally
distributed process in statistical control is denoted as X. The fractions are determined from

P(X < LSL) = P(Z < (LSL — w)/o)  P(X > USL) = P(Z > (USL — p)/c)

For an electronic manufacturing process a current has specifications of 100 = 10 mil-
liamperes. The process mean p and standard deviation o are 107.0 and 1.5, respectively. The
process mean is nearer to the USL. Consequently,

PCR = (110 — 90)/(6 - 1.5) = 222 and PCR; = (110 — 107)/(3 - 1.5) = 0.67

The small PCR, indicates that the process is likely to produce currents outside of the specifi-
cation limits. From the normal distribution in Appendix Table 11

P(X < LSL) = P(Z < (90 — 107)/15) = P(Z < —11.33) = 0
P(X > USL) = P(Z > (110 — 107)/1.5) = P(Z > 2) = 0.023

For this example, the relatively large probability of exceeding the USL is a warning of po-
tential problems with this criterion even if none of the measured observations in a preliminary
sample exceed this limit. We emphasize that the fraction-nonconforming calculation assumes
that the observations are normally distributed and the process is in control. Departures from
normality can seriously affect the results. The calculation should be interpreted as an approx-
imate guideline for process performance. To make matters worse, . and o need to be esti-
mated from the data available and a small sample size can result in poor estimates that further
degrade the calculation.

Montgomery (2001) provides guidelines on appropriate values of the PCR and a table re-
lating fallout for a normally distributed process in statistical control to the value of PCR.
Many U.S. companies use PCR = 1.33 as a minimum acceptable target and PCR = 1.66 as a
minimum target for strength, safety, or critical characteristics. Some companies require that
internal processes and those at suppliers achieve a PCR, = 2.0. Figure 16-15 illustrates a
process with PCR = PCR; = 2.0. Assuming a normal distribution, the calculated fallout for
this process is 0.0018 parts per million. A process with PCR;, = 2.0 is referred to as a six-
sigma process because the distance from the process mean to the nearest specification is six
standard deviations. The reason that such a large process capability is often required is that it
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Figure 16-15 Mean
of a six-sigma process
shifts by 1.5 standard
deviations.
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[<1.50>]

USL

is difficult to maintain a process mean at the center of the specifications for long periods of
time. A common model that is used to justify the importance of a six-sigma process is illus-
trated by referring to Fig. 16-15. If the process mean shifts off-center by 1.5 standard devia-
tions, the PCR, decreases to 4.5¢/3c = 1.5. Assuming a normally distributed process, the
fallout of the shifted process is 3.4 parts per million. Consequently, the mean of a 6-sigma
process can shift 1.5 standard deviations from the center of the specifications and still main-
tain a fallout of 3.4 parts per million.

In addition, some U.S. companies, particularly the automobile industry, have adopted the
terminology C, = PCR and C,, = PCR,. Because C, has another meaning in statistics (in
multiple regression) we prefer the traditional notation PCR and PCR,.

We repeat that process capability calculations are meaningful only for stable
processes; that is, processes that are in control. A process capability ratio indicates
whether or not the natural or chance variability in a process is acceptable relative to the

specifications.

EXERCISES FOR SECTION 16-7

16-13. A normally distributed process uses 66.7% of the
specification band. It is centered at the nominal dimension, lo-
cated halfway between the upper and lower specification limits.
(a) Estimate PCR and PCR,. Interpret these ratios.

(b) What fallout level (fraction defective) is produced?

16-14. Reconsider Exercise 16-1. Use the revised control

limits and process estimates.

(a) Estimate PCR and PCR,. Interpret these ratios.

(b) What percentage of defectives is being produced by this
process?

16-15. Reconsider Exercise 16-2, where the specification

limits are 14.50 = 0.50.

(a) What conclusions can you draw about the ability of the
process to operate within these limits? Estimate the per-
centage of defective items that will be produced.

(b) Estimage PCR and PCR,. Interpret these ratios.

16-16. Reconsider Exercise 16-3. Using the process esti-
mates, what is the fallout level if the coded specifications are
10 = 5 mm? Estimate PCR and interpret this ratio.

16-17. Anormally distributed process uses 85% of the spec-
ification band. It is centered at the nominal dimension, located
halfway between the upper and lower specification limits.

(a) Estimate PCR and PCR,. Interpret these ratios.

(b) What fallout level (fraction defective) is produced?
16-18. Reconsider Exercise 16-5. Suppose that the quality
characteristic is normally distributed with specification at 220 =
40. What is the fallout level? Estimate PCR and PCR; and in-
terpret these ratios.

16-19. Reconsider Exercise 16-6. Suppose that the variable
is normally distributed with specifications at 220 = 50. What
is the proportion out of specifications? Estimate and interpret
PCR and PCR,.

16-20. Reconsider Exercise 16-4(a). Assuming that both
charts exhibit statistical control and that the process specifica-
tions are at 20 + 5, estimate PCR and PCR,, and interpret these
ratios.

16-21. Reconsider Exercise 16-8. Given that the specifica-
tions are at 6.0 = 1.0, estimate PCR and PCR, and interpret
these ratios.

16-22. Reconsider 16-7(b). What are the natural tolerance
limits of this process?

16-23. Reconsider 16-12. The viscosity specifications are at
500 = 25. Calculate estimates of the process capability ratios
PCR and PCR;, for this process and provide an interpretation.
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16-8 ATTRIBUTE CONTROL CHARTS

16-8.1 P Chart (Control Chart for Proportions)

P Chart

Often it is desirable to classify a product as either defective or nondefective on the basis of com-
parison with a standard. This classification is usually done to achieve economy and simplicity in
the inspection operation. For example, the diameter of a ball bearing may be checked by deter-
mining whether it will pass through a gauge consisting of circular holes cut in a template. This
kind of measurement would be much simpler than directly measuring the diameter with a device
such as a micrometer. Control charts for attributes are used in these situations. Attribute control
charts often require a considerably larger sample size than do their variable measurements coun-
terparts. In this section, we will discuss the fraction-defective control chart, or P chart.
Sometimes the P chart is called the control chart for fraction nonconforming.

Suppose D is the number of defective units in a random sample of size n. We assume that
D is a binomial random variable with unknown parameter p. The fraction defective

P

Slv!

of each sample is plotted on the chart. Furthermore, the variance of the statistic 2 is

, pl-p)
Op = n

Therefore, a P chart for fraction defective could be constructed using p as the center line and

control limits at
1— 1—
w1=p+3J4ﬁ7@ Mlzp—BJﬂﬁT@' (16-22)

However, the true process fraction defective is almost always unknown and must be estimated
using the data from preliminary samples.

Suppose that m preliminary samples each of size » are available, and let D, be the number
of defectives in the ith sample. The P, = D,/n is the sample fraction defective in the ith
sample. The average fraction defective is

3
[N
3

_ 1 ~
P=>P=502>D (16-23)
: <

Il
=

|
-

Now P may be used as an estimator of p in the center line and control limit calculations.

The center line and upper and lower control limits for the P chart are

= =
M1:ﬁ+3Jﬂ7JQ<1:ﬁ Ml=ﬁ—3Jﬂij (16-24)

where p is the observed value of the average fraction defective.
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EXAMPLE 16-4

Table 16-4 Number of Defectives in Samples of 100
Ceramic Substrates

Sample No. of Defectives Sample No. of Defectives
1 44 11 36
2 48 12 52
3 32 13 35
4 50 14 41
5 29 15 42
6 31 16 30
7 46 17 46
8 52 18 38
9 44 19 26

10 48 20 30

These control limits are based on the normal approximation to the binomial distribu-
tion. When p is small, the normal approximation may not always be adequate. In such
cases, we may use control limits obtained directly from a table of binomial probabilities.
If p is small, the lower control limit obtained from the normal approximation may be a
negative number. If this should occur, it is customary to consider zero as the lower control
limit.

Suppose we wish to construct a fraction-defective control chart for a ceramic substrate pro-
duction line. We have 20 preliminary samples, each of size 100; the number of defectives in
each sample is shown in Table 16-4. Assume that the samples are numbered in the sequence
of production. Note that p = (800/2000) = 0.40; therefore, the trial parameters for the con-
trol chart are

(0.40)(0.60)
UCL =040 + 3,/—————>=1055 CL =040
100
LCL = 0.40 — 3 (040)(060) _ 0.25
e 100

The control chart is shown in Fig. 16-16. All samples are in control. If they were not, we
would search for assignable causes of variation and revise the limits accordingly. This chart
can be used for controlling future production.

Although this process exhibits statistical control, its defective rate (p = 0.40) is very
poor. We should take appropriate steps to investigate the process to determine why such a
large number of defective units is being produced. Defective units should be analyzed to de-
termine the specific types of defects present. Once the defect types are known, process
changes should be investigated to determine their impact on defect levels. Designed experi-
ments may be useful in this regard.

Computer software also produces an NP chart. This is just a control chart of nP = D, the
number of defectives in a sample. The points, center line, and control limits for this chart are
just multiples (times 7) of the corresponding elements of a P chart. The use of an NP chart
avoids the fractions in a P chart.



Figure 16-16 P chart
for a ceramic substrate.
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16-8.2 U Chart (Control Chart for Defects per Unit)

U Chart

It is sometimes necessary to monitor the number of defects in a unit of product rather than

the fraction defective. Suppose that in the production of cloth it is necessary to control the

number of defects per yard or that in assembling an aircraft wing the number of missing riv-

ets must be controlled. In these situations we may use the control chart for defects per unit,

or the U chart. Many defects-per-unit situations can be modeled by the Poisson distribution.
If each sample consists of » units and there are C total defects in the sample,

is the average number of defects per unit. A U chart may be constructed for such data.

If the number of defects in a unit is a Poisson random variable with parameter \, the mean and
variance of this distribution are both . Each point on the chart is U, the average number of defects
per unit from a sample of 7 units. Therefore, the mean of Uis \ and the variance of U'is \/n.

UCL = A + 3\ﬁ
n
A
LCL = A — 3\/; (16-25)

If there are m preliminary samples, and the number of defects per unit in these samples are Uj,
U,, ..., U, the estimator of the average number of defects per unit is

NI

U, (16-26)

1

. m
U =
i=1

The parameters of the U chart are defined as follows.

The center line and upper and lower control limits on the U chart are

UCL = + 3 CL=1u LCL=u—3\/g (16-27)

where u is the average number of defects per unit.
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EXAMPLE 16-5

These control limits are based on the normal approximation to the Poisson distribution.
When X\ is small, the normal approximation may not always be adequate. In such cases, we
may use control limits obtained directly from a table of Poisson probabilities. If u is small,
the lower control limit obtained from the normal approximation may be a negative number.
If this should occur, it is customary to consider zero as the lower control limit.

Printed circuit boards are assembled by a combination of manual assembly and automation. A
flow solder machine is used to make the mechanical and electrical connections of the leaded
components to the board. The boards are run through the flow solder process almost continu-
ously, and every hour five boards are selected and inspected for process-control purposes. The
number of defects in each sample of five boards is noted. Results for 20 samples are shown in
Table 16-5.

The center line for the U chart is

and the upper and lower control limits are

UCL=u+3\/7=1.6+31/1£_)6=3.3
_ u 16
LCL=u—3\/;=1.6—31/5<0

The control chart is plotted in Fig. 16-17. Because LCL is negative, it is set to 0. From the con-
trol chart in Fig. 16-17, we see that the process is in control. However, eight defects per group
of five circuit boards are too many (about 8/5 = 1.6 defects/board), and the process needs
improvement. An investigation needs to be made of the specific types of defects found on the
printed circuit boards. This will usually suggest potential avenues for process improvement.

NI

Computer software also produces a C chart. This is just a control chart of C, the total of
defects in a sample. The points, center line, and control limits for this chart are just multiples

Table 16-5 Number of Defects in Samples of Five Printed Circuit Boards

Number of Defects per Number of Defects per
Sample Defects Unit u; Sample Defects Unit u;
1 6 12 11 9 1.8
2 4 0.8 12 15 3.0
3 8 1.6 13 8 1.6
4 10 2.0 14 10 2.0
5 9 1.8 15 8 1.6
6 12 24 16 2 04
7 16 3.2 17 7 14
8 2 0.4 18 1 0.2
9 3 0.6 19 7 14
10 10 2.0 20 13 2.6
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(times n) of the corresponding elements of a U chart. The use of a C chart avoids the fractions

that can occur in a U chart.

EXERCISES FOR SECTION 16-8

16-24. Suppose the following fraction defective has been

found in successive samples of size 100 (read down):
0.09 0.03 0.12
0.10 0.05 0.14
0.13 0.13 0.06
0.08 0.10 0.05
0.14 0.14 0.14
0.09 0.07 0.11
0.10 0.06 0.09
0.15 0.09 0.13
0.13 0.08 0.12
0.06 0.11 0.09

(@) Using all the data, compute trial control limits for a
fraction-defective control chart, construct the chart, and
plot the data.

(b) Determine whether the process is in statistical control. If not,
assume assignable causes can be found and out-of-control
points eliminated. Revise the control limits.

16-25. The following represent the number of solder de-

fects observed on 24 samples of five printed circuit boards: 7,

6, 8,10,24,6,5,4,8,11, 15, 8,4, 16, 11, 12, 8,6, 5,9, 7, 14,

8, 21.

(@) Using all the data, compute trial control limits for a U con-
trol chart, construct the chart, and plot the data.

(b) Can we conclude that the process is in control using a U
chart? If not, assume assignable causes can be found, list
points and revise the control limits.

16-26. The following represent the number of defects

per 1000 feet in rubber-covered wire: 1, 1, 3, 7, 8, 10, 5, 13,
0,19,24,6,9,611,15,8,3,6,7,4,9, 20, 11, 7, 18, 10, 6, 4,
0,9, 7, 3,1, 8, 12. Do the data come from a controlled
process?

16-27. Consider the data in Exercise 16-25. Set up a C chart
for this process. Compare it to the U chart in Exercise 16-25.
Comment on your findings.

16-28. The following are the numbers of defective sol-
der joints found during successive samples of 500 solder
joints:

Day No. of Defectives Day No. of Defectives
1 106 12 37
2 116 13 25
3 164 14 88
4 89 15 101
5 99 16 64
6 40 17 51
7 112 18 74
8 36 19 71
9 69 20 43

10 74 21 80
11 42

(a) Using all the data, compute trial control limits for a
fraction-defective control chart, construct the chart, and
plot the data.

(b) Determine whether the process is in statistical control. If not,
assume assignable causes can be found and out-of-control
points eliminated. Revise the control limits.

-

-
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16-9 CONTROL CHART PERFORMANCE

Specifying the control limits is one of the critical decisions that must be made in designing a
control chart. By moving the control limits further from the center line, we decrease the risk
of a type | error—that is, the risk of a point falling beyond the control limits, indicating an
out-of-control condition when no assignable cause is present. However, widening the control
limits will also increase the risk of a type Il error—that is, the risk of a point falling between
the control limits when the process is really out of control. If we move the control limits closer
to the center line, the opposite effect is obtained: The risk of type I error is increased, while the
risk of type Il error is decreased.

The control limits on a Shewhart control chart are customarily located a distance of plus
or minus three standard deviations of the variable plotted on the chart from the center line.
That is, the constant £ in equation 16-1 should be set equal to 3. These limits are called
3-sigma control limits.

A way to evaluate decisions regarding sample size and sampling frequency is through the
average run length (ARL) of the control chart. Essentially, the ARL is the average number of
points that must be plotted before a point indicates an out-of-control condition. For any Shewhart
control chart, the ARL can be calculated from the mean of a geometric random variable
(Montgomery 2001). Suppose that p is the probability that any point exceeds the control limits. Then

ARL = (16-28)

Thus, for an X chart with 3-sigma limits, p = 0.0027 is the probability that a single point falls
outside the limits when the process is in control, so

1
ARL = 5 = 00027

= 370

is the average run length of the X chart when the process is in control. That is, even if the process
remains in control, an out-of-control signal will be generated every 370 points, on the average.

Consider the piston ring process discussed in Section 16-4.2, and suppose we are sampling
every hour. Thus, we will have a false alarm about every 370 hours on the average. Suppose we
are using a sample size of » = 5 and that when the process goes out of control the mean shifts to
74.0135 millimeters. Then, the probability that X falls between the control limits of Fig. 16-3 is
equal to

P[73.9865 = X = 74.0135 when w = 74.0135]

73.9865 — 74.0135 s 74.0135 — 74.0135
0.0045 0.0045

=P[-6=Z=0]=05

Therefore, p in Equation 16-28 is 0.50, and the out-of-control ARL is

PR S S
P05



Figure 16-18
Process mean shift
of 2¢.
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Table 16-6  Average Run Length (ARL) for an X Chart with 3-Sigma
Control Limits

Magnitude of ARL ARL
Process Shift n=1 n=4
0 370.4 370.4

0.50 155.2 43.9
1.00 43.9 6.3
150 15.0 2.0
2.00 6.3 12
3.00 2.0 1.0

That is, the control chart will require two samples to detect the process shift, on the aver-
age, so two hours will elapse between the shift and its detection (again on the average).
Suppose this approach is unacceptable, because production of piston rings with a mean di-
ameter of 74.0135 millimeters results in excessive scrap costs and delays final engine as-
sembly. How can we reduce the time needed to detect the out-of-control condition? One
method is to sample more frequently. For example, if we sample every half hour, only one
hour will elapse (on the average) between the shift and its detection. The second possibil-
ity is to increase the sample size. For example, if we use n = 10, the control limits in
Fig. 16-3 narrow to 73.9905 and 74.0095. The probability of .X falling between the control
limits when the process mean is 74.0135 millimeters is approximately 0.1, so p = 0.9, and
the out-of-control ARL is

1
ARL—E—@—l.ll

Thus, the larger sample size would allow the shift to be detected about twice as quickly as the
old one. If it became important to detect the shift in the first hour after it occurred, two con-
trol chart designs would work:

Design 1 Design 2
Sample size: n = 5 Sample size: n = 10
Sampling frequency: every half hour ~ Sampling frequency: every hour

Table 16-6 provides average run lengths for an X chart with 3-sigma control limits. The aver-
age run lengths are calculated for shifts in the process mean from 0 to 3.0c and for sample
sizesof n = 1and n = 4 by using 1/p, where p is the probability that a point plots outside of
the control limits. Figure 16-18 illustrates a shift in the process mean of 2.

u—->u+20
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EXERCISES FOR SECTION 16-9

16-29. Consider the X control chart in Fig. 16-3. Suppose

that the mean shifts to 74.010 millimeters.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-30. An X chart uses samples of size 4. The center line is

at 100, and the upper and lower 3-sigma control limits are at

106 and 94, respectively.

(a) What is the process o?

(b) Suppose the process mean shifts to 96. Find the
probability that this shift will be detected on the next
sample.

(c) Find the ARL to detect the shift in part (b).

16-31. Consider the revised X control chart in Exercise 16-1

with ¢ = 2.466, UCL = 37.404, LCL = 30.780, and n = 5.

Suppose that the mean shifts to 36.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-32. Consider the X control chart in Exercise 16-2(a)

with 7 = 0.344, UCL = 14.708, LCL = 14.312, and n = 5.

Suppose that the mean shifts to 14.6.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-33. Consider the X control chart in Exercise 16-3(a)

with 7 = 6.750, UCL = 15.630, LCL = 5.795, and n = 4.

Suppose that the mean shifts to 13.

(a) What is the probability that this shift will be detected on
the next sample?
(b) What is the ARL after the shift?

16-34. Consider the X control chart in Exercise 16-4(a)

with ¢ = 1.40, UCL = 21.88, LCL = 18.12, and n = 5.

Suppose that the mean shifts to 17.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-35. Consider the X control chart in Exercise 16-5 with

¥ = 34.286, UCL = 242.780, LCL = 203.220, and n = 5.

Suppose that the mean shifts to 210.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-36. Consider the revised X control chart in Exercise 16-7

with & = 0.000924, UCL = 0.0635, LCL = 0.0624, and

n = 5. Suppose that the mean shifts to 0.0625.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-37. Consider the revised X control chart in Exercise 16-8

with ¢ = 0.669, UCL = 7.443, LCL = 5.125, and n = 3.

Suppose that the mean shifts to 5.5.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-10 CUMULATIVE SUM CONTROL CHART

In Sections 16-5 and 16-6 we have presented basic types of Shewhart control charts. A ma-
jor disadvantage of any Shewhart control chart is that the chart is relatively insensitive to
small shifts in the process, say, on the order of about 1.5¢ or less. One reason for this relatively
poor performance in detecting small process shifts is that the Shewhart chart makes use of
only the information in the last plotted point, and it ignores the information in the sequence of
points. This problem can be addressed, to some extent by adding criteria such as the Western
Electric rules to a Shewhart chart, but the use of these rules reduces the simplicity and ease
of interpretation of the chart. These rules would also cause the in-control average run length
of a Shewhart chart to drop below 370. This increase in the false alarm rate can have serious
practical consequences.

A very effective alternative to the Shewhart control chart is the cumulative sum control
chart (or CUSUM). This chart has much better performance (in terms of ARL) for detecting
small shifts than the Shewhart chart, but it does not cause the in-control ARL to drop signifi-
cantly. This section will illustrate the use of the CUSUM for sample averages and individual
measurements.

The CUSUM chart plots the cumulative sums of the deviations of the sample values from
a target value. For example, suppose that samples of size n = 1 are collected, and )?j is the
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average of the jth sample. Then if p, is the target for the process mean, the cumulative sum
control chart is formed by plotting the quantity

i

5= X0~ w) (16-29)

against the sample number i. Now, S; is called the cumulative sum up to and including the
ith sample. Because they combine information from several samples, cumulative sum charts
are more effective than Shewhart charts for detecting small process shifts. Furthermore,
they are particularly effective with samples of » = 1. This makes the cumulative sum con-
trol chart a good candidate for use in the chemical and process industries where rational
subgroups are frequently of size 1, as well as in discrete parts manufacturing with automatic
measurement of each part and online control using a microcomputer directly at the work
center.

If the process remains in control at the target value ., the cumulative sum defined in
equation 16-29 should fluctuate around zero. However, if the mean shifts upward to some
value pq > o, Say, an upward or positive drift will develop in the cumulative sum S..
Conversely, if the mean shifts downward to some w; < w,, @a downward or negative drift in S;
will develop. Therefore, if a trend develops in the plotted points either upward or downward,
we should consider this as evidence that the process mean has shifted, and a search for the
assignable cause should be performed.

This theory can easily be demonstrated by applying the CUSUM to the chemical process
concentration data in Table 16-3. Since the concentration readings are individual measure-
ments, we would take )?j = X; in computing the CUSUM. Suppose that the target value for the
concentration is py = 99. Then the CUSUM is

i

> (4 - 99)

=i

Si

|
-

(- 99) + 3,08 - 9)

j=

=X —99) + S

[N

Table 16-7 shows the computation of this CUSUM, where the starting value of the
CUSUM, Sy, is taken to be zero. Figure 16-19 plots the CUSUM from the last column of Table
16-7. Notice that the CUSUM fluctuates around the value of 0.

The graph in Fig. 16-19 is not a control chart because it lacks control limits. There are
two general approaches to devising control limits for CUSUMS. The older of these two
methods is the V-mask procedure. A typical V mask is shown in Fig. 16-20(a). It is a
V-shaped notch in a plane that can be placed at different locations on the CUSUM chart. The
decision procedure consists of placing the VV mask on the cumulative sum control chart with
the point O on the last value of s; and the line OP parallel to the horizontal axis. If all the pre-
vious cumulative sums, sq, s,, . . ., 5,1, lie within the two arms of the VV mask, the process is
in control. However, if any s; lies outside the arms of the mask, the process is considered to
be out of control. In actual use, the V mask would be applied to each new point on the
CUSUM chart as soon as it was plotted. In the example shown in Fig. 16-20(b), an upward
shift in the mean is indicated, since at least one of the points that have occurred earlier than
sample 22 now lies below the lower arm of the mask, when the VV mask is centered on the
thirtieth observation. If the point lies above the upper arm, a downward shift in the mean is
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Table 16-7 CUSUM Computations for the Chemical Process Concentration Data in Table 16-3

Observation, i X; x; — 99 s; = (x; — 99) + 5,4
1 102.0 3.0 3.0
2 94.8 —4.2 -1.2
3 98.3 -0.7 -1.9
4 98.4 —0.6 —-25
5 102.0 3.0 0.5
6 98.5 —05 0.0
7 99.0 0.0 0.0
8 97.7 -13 -13
9 100.0 1.0 -0.3

10 98.1 -0.9 -1.2
11 101.3 2.3 11
12 98.7 -0.3 0.8
13 101.1 2.1 2.9
14 98.4 —0.6 2.3
15 97.0 -2.0 0.3
16 96.7 -2.3 -2.0
17 100.3 1.3 -0.7
18 101.4 2.4 1.7
19 97.2 -1.8 -0.1
20 101.0 2.0 1.9

indicated. Thus, the V mask forms a visual frame of reference similar to the control limits on
an ordinary Shewhart control chart. For the technical details of designing the V mask, see
Montgomery (2001).

While some computer programs plot CUSUMS with the V-mask control scheme,
we feel that the other approach to CUSUM control, the tabular CUSUM, is superior.

+4

+2 H

. y
A

S

Figure 16-19 Plot of

the cumulative sum for .

the concentration data, 1 23 456 7 8 910111213 14151617 18 19 20
Table 16-7. Observation, i
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Figure 16-20 The cumulative sum control chart. (a) The V-mask and scaling. (b) The cumulative
sum control chart in operation.

The tabular procedure is particularly attractive when the CUSUM is implemented on a
computer.

Let Sy (i) be an upper one-sided CUSUM for period i and S,(i) be a lower one-sided
CUSUM for period i. These quantities are calculated from

sy() = max[0, X; — (no + K) + sy(i — 1)] (16-30)
and

sp(@) = max[0, (g — K) —x; + s;,(i — 1)] (16-31)

where the starting values s;(0) = s,(0) = 0.

In Equations 16-30 and 16-31 K is called the reference value, which is usually chosen
about halfway between the target p, and the value of the mean corresponding to the out-of-
control state, w; = wo + A. That is, K is about one-half the magnitude of the shift we are in-
terested in, or

P
2

Notice that Sy, (i) and S, (i) accumulate deviations from the target value that are greater than
K, with both quantities reset to zero upon becoming negative. If either S, (i) or S, (i) exceeds
a constant H, the process is out of control. This constant H is usually called the decision
interval.
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EXAMPLE 16-6

A Tabular CUSUM

We will illustrate the tabular CUSUM by applying it to the chemical process concentration data
in Table 16-7. The process target is u, = 99, and we will use K = 1 as the reference value and
H = 10 as the decision interval. The reasons for these choices will be explained later.

Table 16-8 shows the tabular CUSUM scheme for the chemical process concentration
data. To illustrate the calculations, note that

sy(@) = max[0,x; — (po + K) + sp(i — 1)] = max[0,x; — (99 + 1) + sy(i — 1)]
= max[O x; — 100 + sy(i — 1)]

s; (i) = max[0, (mo — K) — x; + sz(i — 1)] = max[0, (99 — 1) — x; + 5;(i — 1)]
= max[0,98 — x; + s;(i — 1)]

Therefore, for observation 1 the CUSUMS are
sp(1) = max[0, x; — 100 + s5(0)] = max[0, 102.0 — 100 + 0] = 2.0

and
s7(1) = max[0, 98 — x; + 5;(0)] = max[0, 98 — 102.0 + 0] =0

as shown in Table 16-8. The quantities n; and n; in Table 16-8 indicate the number of periods that
the CUSUM s (d) or s, (i) have been nonzero. Notice that the CUSUMS in this example never ex-
ceed the decision interval # = 10. We would therefore conclude that the process is in control.

When the tabular CUSUM indicates that the process is out of control, we should search
for the assignable cause, take any corrective actions indicated, and restart the CUSUMS at

Table 16-8 The Tabular CUSUM for the Chemical Process Concentration Data

Observation Upper CUSUM Lower CUSUM
i £ x; — 100 sy (i) i 98 — x; s;.(2) n
1 102.0 2.0 2.0 1 -4.0 0.0 0
2 94.8 —5.2 0.0 0 3.2 3.2 1
3 98.3 -1.7 0.0 0 -0.3 2.9 2
4 98.4 -1.6 0.0 0 -0.4 25 3
5 102.0 2.0 2.0 1 -4.0 0.0 0
6 98.5 -15 0.5 2 -0.5 0.0 0
7 99.0 -1.0 0.0 0 -1.0 0.0 0
8 97.7 -2.3 0.0 0 0.3 0.3 1
9 100.0 0.0 0.0 0 -2.0 0.0 0
10 98.1 -1.9 0.0 0 -0.1 0.0 0
11 101.3 1.3 13 1 -3.3 0.0 0
12 98.7 -13 0.0 0 -0.7 0.0 0
13 101.1 11 11 1 -3.1 0.0 0
14 98.4 -1.6 0.0 0 -0.4 0.0 0
15 97.0 -3.0 0.0 0 1.0 1.0 1
16 96.7 -33 0.0 0 1.3 2.3 2
17 100.3 0.3 0.3 1 -2.3 0.0 0
18 101.4 1.4 1.7 2 -34 0.0 0
19 97.2 -2.8 0.0 0 0.8 0.8 1
20 101.0 1.0 1.0 0 -3.0 0.0 0




Figure 16-21 The
CUSUM status chart
for Example 15-6.
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zero. It may be helpful to have an estimate of the new process mean following the shift. This
can be computed from

) T
o + K + ZH, if s,(i) > H
i = . 16-32
S G R 1o
Ko n if s,(i) >

It is also useful to present a graphical display of the tabular CUSUMS, which are some-
times called CUSUM status charts. They are constructed by plotting s, (i) and s, (i) versus the
sample number. Figure 16-21 shows the CUSUM status chart for the data in Example 16-6.
Each vertical bar represents the value of s, (i) and s,(i) in period i. With the decision interval
plotted on the chart, the CUSUM status chart resembles a Shewhart control chart. We have
also plotted the sample statistics x; for each period on the CUSUM status chart as the solid
dots. This frequently helps the user of the control chart to visualize the actual process per-
formance that has led to a particular value of the CUSUM.

The tabular CUSUM is designed by choosing values for the reference value K and the de-
cision interval H. We recommend that these parameters be selected to provide good average
run-length values. There have been many analytical studies of CUSUM ARL performance.
Based on these studies, we may give some general recommendations for selecting H and K.
Define H = hoy and K = ko, where o is the standard deviation of the sample variable used
in forming the CUSUM (if n = 1, 0y = oy). Using h = 4 or h = 5and k = 1/2 will gener-
ally provide a CUSUM that has good ARL properties against a shift of about 1o (or 1oy) in
the process mean. If much larger or smaller shifts are of interest, set k = /2, where 3 is the size
of the shift in standard deviation units. Some practitioners prefer to use a standardized variable
vi = (x; — po)/ox as the basis of the CUSUM. In that case, Equations 16-30 and 16-31 become

sy(i) = max[0,y; — K + sy(i — 1)] and s;(i) = max[0, K — y; + s;(i — 1)]

106 6
H=5
105 5
104 4
103 3
102 T 2 ° ° .
s(2) ° °
101 1 °
x °
100 0 o
99 - 1 ° °
510 o= ¢ ° °
98 l 2 ) °
97 3 ¢ °
96 4
H=5
95 5
°
94 6

1 23 45 6 7 8 9 101112131415 1617 18 19 20
Sample number
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Table 16-9  Average Run Lengths for a CUSUM Control Chart

WithK = 1/2
Shift in Mean

(multiple of o) h=4 h=5
0 168 465
0.25 74.2 139
0.50 26.6 38.0
0.75 13.3 17.0
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 171 2.01

For this scheme, we would usually select K = 1/2and H = 4 or H = 5.

To illustrate how well the recommendations of 2 = 4 or » = 5 with £ = 1/2 work, con-
sider these average run lengths in Table 16-9. Notice that a shift of 1o would be detected in
either 8.38 samples (with k = 1/2 and 4 = 4) or 10.4 samples (with k = 1/2 and & = 5). By
comparison, Table 16-1 shows that an X chart would require approximately 43.9 samples, on
the average, to detect this shift.

These design rules were used for the CUSUM in Example 16-6. We assumed that the
process standard deviation o = 2. (This is a reasonable value; see Example 16-2.) Then with
k=1/2and # = 5, we would use

K=ko=%(2)=1 and H=ho=5(2)=10

in the tabular CUSUM procedure.

Finally, we should note that supplemental procedures such as the Western Electric rules
cannot be safely applied to the CUSUM, because successive values of S, (i) and S,(i) are not
independent. In fact, the CUSUM can be thought of as a weighted average, where the weights
are stochastic or random. In effect, all the CUSUM values are highly correlated, thereby caus-
ing the Western Electric rules to give too many false alarms.

EXERCISES FOR SECTION 16-10

16-38. The purity of a chemical product is measured every (a) Set up a CUSUM control chart for this process. Use

Cj two hours. The results of 20 consecutive measurements are as o = 0.8 in setting up the procedure, and assume that the
> follows: desired process target is 90. Does the process appear to
. . be in control?
Sample Purity Sample Purity (b) Suppose that the next five observations are 90.75, 90.00,
1 89.11 11 88.55 91.15, 90.95, and 90.86. Apply the CUSUM in part (a) to
g gggg ig 323431 these new observations. Is there any evidence that the
4 8946 14 88 17 process has shifted out of control?
5 89.78 15 91.23 16-39. The diameter of holes is measured in consecutive
6 90.05 16 90.92 order by an automatic sensor. The results of measuring 25
7 90.63 17 88.86 holes follow.
8 90.75 18 90.87 (a) Estimate the process standard deviation.
lg ggi’g %8 gg;g (b) Set up a CUSUM control procedure, assuming that the

target diameter is 10.0 millimeters. Does the process
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Sample Diameter Sample Diameter
1 9.94 14 9.99
2 9.93 15 10.12
3 10.09 16 9.81
4 9.98 17 9.73
5 10.11 18 10.14
6 9.99 19 9.96
7 10.11 20 10.06
8 9.84 21 10.11
9 9.82 22 9.95

10 10.38 23 9.92
11 9.99 24 10.09
12 10.41 25 9.85
13 10.36

appear to be operating in a state of statistical control at the de-
sired target level?

16-40. The concentration of a chemical product is meas-
ured by taking four samples from each batch of material. The
average concentration of these measurements is shown for the
last 20 batches in the following table:

Batch Concentration Batch Concentration

16-11 OTHER SPC PROBLEM-SOLVING TOOLS 639

(a) Suppose that the process standard deviation is ¢ = 8 and
that the target value of concentration for this process is
100. Design a CUSUM scheme for the process. Does the
process appear to be in control at the target?

(b) How many batches would you expect to be produced with
off-target concentration before it would be detected by the
CUSUM control chart if the concentration shifted to 104?
Use Table 16-9.

16-41. Consider a standardized CUSUM with # = 5 and
K = 1/2. Samples are taken every two hours from the
process. The target value for the process is p, = 50 and
o = 2. Use Table 16-9.

(@) If the sample size is n = 1, how many samples would be
required to detect a shift in the process meanto u = 51 on
average?

(b) If the sample size is increased to n = 4, how does this af-
fect the average run length to detect the shift to p = 51
that you determined in part (a)?

16-42. A process has a target of w, = 100 and a standard

deviation of ¢ = 4. Samples of size n = 1 are taken every two

hours. Use Table 16-9.

(@) Suppose the process mean shifts to uw = 102. How many
hours of production will occur before the process shift is
detected by a standardized CUSUM with H# = 5 and
K=1/2?

(b) It is important to detect the shift defined in part (a) more

1 104.5 11 95.4 quickly. A proposal is made to reduce the sampling

2 99.9 12 945 frequency to 0.5 hour. How will this affect the CUSUM

3 106.7 13 1045 control procedure? How much more quickly will the shift

be detected?

4 1052 14 99.7 (c) Suppose that the 0.5 hour sampling interval in part (b) is

5 94.8 15 97.7 adopted. How often will false alarms occur with this new

6 94.6 16 97.0 sampling interval? How often did they occur with the old
7 104.4 17 95.8 interval of two hours?

3 994 18 97.4 (d) A proposal is made to increase the sample size to n = 4 and

9 1003 19 99.0 retain the two-hour sampling interval. How does this sug-

' ' gestion compare in terms of average detection time to the

10 100.3 20 102.6 suggestion of decreasing the sampling interval to 0.5 hour?

16-11 OTHER SPC PROBLEM-SOLVING TOOLS

While the control chart is a very powerful tool for investigating the causes of variation in a
process, it is most effective when used with other SPC problem-solving tools. In this section
we illustrate some of these tools, using the printed circuit board defect data in Example 16-4.

Figure 16-17 shows a U chart for the number of defects in samples of five printed circuit
boards. The chart exhibits statistical control, but the number of defects must be reduced. The
average number of defects per board is 8/5 = 1.6, and this level of defects would require ex-

tensive rework.

The first step in solving this problem is to construct a Pareto diagram of the individual de-
fect types. The Pareto diagram, shown in Fig. 16-22, indicates that insufficient solder and solder
balls are the most frequently occurring defects, accounting for (109/160) 100 = 68% of the
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observed defects. Furthermore, the first five defect categories on the Pareto chart are all solder-
related defects. This points to the flow solder process as a potential opportunity for improvement.

To improve the flow solder process, a team consisting of the flow solder operator, the
shop supervisor, the manufacturing engineer responsible for the process, and a quality engi-
neer meets to study potential causes of solder defects. They conduct a brainstorming session
and produce the cause-and-effect diagram shown in Fig. 16-23. The cause-and-effect diagram
is widely used to display the various potential causes of defects in products and their interre-
lationships. They are useful in summarizing knowledge about the process.

As a result of the brainstorming session, the team tentatively identifies the following vari-
ables as potentially influential in creating solder defects:

1. Flux specific gravity
2. Solder temperature

Machine Solder Flux

Wave turbulance Temperature

Exhaust

Wave height

Conveyor speed Specific gravity

Maintenance Contact time

Conveyor angle Wave fluidity

Solder
defects

Alignment of pallet Orientation

Solderability Temperature

Figure 16-23 Cause- Pallet loading

and-effect diagram for
the printed circuit
board flow solder
process.

Contaminated lead

Preheat

Operator Components



Figure 16-24 Defect
concentration diagram
for a printed circuit
board.
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Front

Region of insufficient solder

Back

Conveyor speed
Conveyor angle
Solder wave height
Preheat temperature
7. Pallet loading method

AU S

A statistically designed experiment could be used to investigate the effect of these seven vari-
ables on solder defects.

In addition, the team constructed a defect concentration diagram for the product. A de-
fect concentration diagram is just a sketch or drawing of the product, with the most frequently
occurring defects shown on the part. This diagram is used to determine whether defects occur
in the same location on the part. The defect concentration diagram for the printed circuit board
is shown in Fig. 16-24. This diagram indicates that most of the insufficient solder defects are
near the front edge of the board, where it makes initial contact with the solder wave. Further
investigation showed that one of the pallets used to carry the boards across the wave was bent,
causing the front edge of the board to make poor contact with the solder wave.

When the defective pallet was replaced, a designed experiment was used to investigate
the seven variables discussed earlier. The results of this experiment indicated that several of
these factors were influential and could be adjusted to reduce solder defects. After the results
of the experiment were implemented, the percentage of solder joints requiring rework was re-
duced from 1% to under 100 parts per million (0.01%).

16-12 IMPLEMENTING SPC

The methods of statistical process control can provide significant payback to those companies
that can successfully implement them. While SPC seems to be a collection of statistically
based problem-solving tools, there is more to the successful use of SPC than simply learning
and using these tools. Management involvement and commitment to the quality-improvement
process is the most vital component of SPC’s potential success. Management is a role model,
and others in the organization will look to management for guidance and as an example. A
team approach is also important, for it is usually difficult for one person alone to introduce
process improvements. Many of the “magnificent seven” problem-solving tools are helpful in
building an improvement team, including cause-and-effect diagrams, Pareto charts, and defect
concentration diagrams. The basic SPC problem-solving tools must become widely known
and widely used throughout the organization. Continuous training in SPC and quality im-
provement is necessary to achieve this widespread knowledge of the tools.

The objective of an SPC-based quality-improvement program is continuous improve-
ment on a weekly, quarterly, and annual basis. SPC is not a one-time program to be applied
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when the business is in trouble and later abandoned. Quality improvement must become part
of the culture of the organization.

The control chart is an important tool for process improvement. Processes do not natu-
rally operate in an in-control state, and the use of control charts is an important step that must
be taken early in an SPC program to eliminate assignable causes, reduce process variability,
and stabilize process performance. To improve quality and productivity, we must begin to
manage with facts and data, and not just rely on judgment. Control charts are an important part
of this change in management approach.

In implementing a company-wide SPC program, we have found that the following ele-
ments are usually present in all successful efforts:

Management leadership

A team approach

Education of employees at all levels
Emphasis on continuous improvement
A mechanism for recognizing success

Nk =

We cannot overemphasize the importance of management leadership and the team approach.
Successful quality improvement is a “top-down” management-driven activity. It is also im-
portant to measure progress and success and to spread knowledge of this success throughout
the organization. When successful improvements are communicated throughout the company,
this can provide motivation and incentive to improve other processes and to make continuous
improvement a normal part of the way of doing business.

The philosophy of W. Edwards Deming provides an important framework for imple-
menting quality and productivity improvement. Deming’s philosophy is summarized in his 14
points for management. The adherence to these management principles has been an important
factor in Japan’s industrial success and continues to be the catalyst in that nation’s quality- and
productivity-improvement efforts. This philosophy has also now spread rapidly in the West.
Deming’s 14 points are as follows.

1. Create a constancy of purpose focused on the improvement of products and serv-
ices. Constantly try to improve product design and performance. Investment in re-
search, development, and innovation will have a long-term payback to the organization.

2. Adopt a new philosophy of rejecting poor workmanship, defective products, or
bad service. It costs as much to produce a defective unit as it does to produce a
good one (and sometimes more). The cost of dealing with scrap, rework, and other
losses created by defectives is an enormous drain on company resources.

3. Do not rely on mass inspection to “control” quality. All inspection can do is sort
out defectives, and at this point it is too late because we have already paid to pro-
duce these defectives. Inspection occurs too late in the process, it is expensive, and
it is often ineffective. Quality results from the prevention of defectives through
process improvement, not inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider
quality. Price is a meaningful measure of a supplier’s product only if it is consid-
ered in relation to a measure of quality. In other words, the total cost of the item
must be considered, not just the purchase price. When quality is considered, the
lowest bidder is frequently not the low-cost supplier. Preference should be given to
suppliers who use modern methods of quality improvement in their business and
who can demonstrate process control and capability.
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Focus on continuous improvement. Constantly try to improve the production and
service system. Involve the workforce in these activities and make use of statistical
methods, particularly the SPC problem-solving tools discussed in the previous sec-
tion.

Practice modern training methods and invest in training for all employees.
Everyone should be trained in the technical aspects of their job, as well as in mod-
ern quality- and productivity-improvement methods. The training should encourage
all employees to practice these methods every day.

Practice modern supervision methods. Supervision should not consist merely of
passive surveillance of workers, but should be focused on helping the employees
improve the system in which they work. The first goal of supervision should be to
improve the work system and the product.

Drive out fear. Many workers are afraid to ask questions, report problems, or point
out conditions that are barriers to quality and effective production. In many organi-
zations the economic loss associated with fear is large; only management can elim-
inate fear.

Break down the barriers between functional areas of the business. Teamwork
among different organizational units is essential for effective quality and productiv-
ity improvement to take place.

Eliminate targets, slogans, and numerical goals for the workforce. A target such
as “zero defects” is useless without a plan as to how to achieve this objective. In
fact, these slogans and “programs” are usually counterproductive. Work to improve
the system and provide information on that.

Eliminate numerical quotas and work standards. These standards have histori-
cally been set without regard to quality. Work standards are often symptoms of man-
agement’s inability to understand the work process and to provide an effective man-
agement system focused on improving this process.

Remove the barriers that discourage employees from doing their jobs. Management
must listen to employee suggestions, comments, and complaints. The person who is
doing the job is the one who knows the most about it, and usually has valuable ideas
about how to make the process work more effectively. The workforce is an impor-
tant participant in the business, and not just an opponent in collective bargaining.

Institute an ongoing program of training and education for all employees.
Education in simple, powerful statistical techniques should be mandatory for all
employees. Use of the basic SPC problem-solving tools, particularly the control
chart, should become widespread in the business. As these charts become wide-
spread, and as employees understand their uses, they will be more likely to look for
the causes of poor quality and to identify process improvements. Education is a way
of making everyone partners in the quality-improvement process.

Create a structure in top management that will vigorously advocate the first 13
points.

As we read Deming’s 14 points, we notice two things. First, there is a strong emphasis on
change. Second, the role of management in guiding this change process is of dominating im-
portance. But what should be changed, and how should this change process be started? For ex-
ample, if we want to improve the yield of a semiconductor manufacturing process, what
should we do? It is in this area that statistical methods most frequently come into play. To im-
prove the semiconductor process, we must determine which controllable factors in the process
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influence the number of defective units produced. To answer this question, we must collect
data on the process and see how the system reacts to changes in the process variables.
Statistical methods, including the SPC and experimental design techniques in this book, can
contribute to this knowledge.

SUPPLEMENTAL EXERCISES

16-43. The diameter of fuse pins used in an aircraft engine (e) To make this process a six-sigma process, the variance a?

= application is an important quality characteristic. Twenty-five would have to be decreased such that PCR, = 2.0. What
= samples of three pins each are shown as follows: should this new variance value be?

(f) Suppose the mean shifts to 64.01. What is the probability
that this shift will be detected on the next sample? What is

Sample _ the ARL after the shift?
Number Diameter 16-44. Rework Exercise 16-43 with X and S charts.

1 64.030 64.002 64.019 16-45. Plastic bottles for liquid laundry detergent are
2 63.995 63.992 64.001 formed by blow molding. Twenty samples of n = 100 bottles
3 63.988 64.024 64.021 are inspected in time order of production, and the fraction de-
4 64.002 63.996 63.993 fective in each sample is reported. The data are as follows:
5 63.992 64.007 64.015
6 64.009 63.994 63.997 Sample Fraction Defective
7 63.995 64.006 63.994 1 0.12
8 63.985 64.003 63.993 2 0.15
9 64.008 63.995 64.009 3 0.18

10 63.998 74.000 63.990 4 0.10

11 63.994 63.998 63.994 5 0.12

12 64.004 64.000 64.007 6 0.11

13 63.983 64.002 63.998 7 0.05

14 64.006 63.967 63.994 8 0.09

15 64.012 64.014 63.998 9 013

16 64.000 63.984 64.005 10 0.13

17 63.994 64.012 63.986 E 8;2

18 64.006 64.010 64.018 13 012

19 63.984 64.002 64.003 14 0.08

20 64.000 64.010 64.013 15 0.09

21 63.988 64.001 64.009 16 0.15

22 64.004 63.999 63.990 17 0.10

23 64.010 63.989 63.990 18 0.06

24 64.015 64.008 63.993 19 0.12

25 63.982 63.984 63.995 20 0.13

(a) Setup X and R charts for this process. If necessary, revise ~ (a) Set up a P chart for this process. Is the process in statisti-

limits so that no observations are out-of-control. cal control?
(b) Estimate the process mean and standard deviation. (b) Suppose that instead of » = 100, n = 200. Use the data
(c) Suppose the process specifications are at 64 =+ 0.02. given to set up a P chart for this process. Revise the con-

Calculate an estimate of PCR. Does the process meet a trol limits if necessary.

minimum capability level of PCR = 1.33? (c) Compare your control limits for the P charts in parts (a) and
(d) Calculate an estimate of PCR,. Use this ratio to draw con- (b). Explain why they differ. Also, explain why your assess-

clusions about process capability. ment about statistical control differs for the two sizes of n.

-



16-46. Cover cases for a personal computer are manufac-
tured by injection molding. Samples of five cases are taken
from the process periodically, and the number of defects is
noted. Twenty-five samples follow:

Sample  No. of Defects Sample  No. of Defects
1 3 14 8
2 2 15 0
3 0 16 2
4 1 17 4
5 4 18 3
6 3 19 5
7 2 20 0
8 4 21 2
9 1 22 1

10 0 23 9
11 2 24 3
12 3 25 2
13 2

(a) Using all the data, find trial control limits for this U chart
for the process.

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of 5 cases, the sample
size was 10. Repeat parts (a) and (b). Explain how this
change alters your answers to parts (a) and (b).

16-47. Consider the data in Exercise 16-46.

(@) Using all the data, find trial control limits for a C chart for
this process.

(b) Use the trial control limits of part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of 5 cases, the sample
was 10 cases. Repeat parts (a) and (b). Explain how this
alters your answers to parts (a) and (b).

16-48. Suppose that a process is in control and an X chart is

used with a sample size of 4 to monitor the process. Suddenly

there is a mean shift of 1.5¢.

(a) If 3-sigma control limits are in use on the X chart, what is
the probability that this shift will remain undetected for
three consecutive samples?

(b) If 2-sigma control limits are in use on the X chart, what is
the probability that this shift will remain undetected for
three consecutive samples?

(c) Compare your answers to parts (a) and (b) and explain
why they differ. Also, which limits you would recommend
using and why?

16-49. Consider the control chart for individuals with

3-sigma limits.
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(a) Suppose that a shift in the process mean of magnitude
o occurs. Verify that the ARL for detecting the shift is
ARL = 43.9.

(b) Find the ARL for detecting a shift of magnitude 2¢ in the
process mean.

(c) Find the ARL for detecting a shift of magnitude 3¢ in the
process mean.

(d) Compare your answers to parts (a), (b), and (c) and ex-
plain why the ARL for detection is decreasing as the mag-
nitude of the shift increases.

16-50. Consider a control chart for individuals, applied to a
continuous 24-hour chemical process with observations taken
every hour.

(a) If the chart has 3-sigma limits, verify that the in-control
ARL is ARL = 370. How many false alarms would occur
each 30-day month, on the average, with this chart?

(b) Suppose that the chart has 2-sigma limits. Does this re-
duce the ARL for detecting a shift in the mean of magni-
tude o? (Recall that the ARL for detecting this shift with
3-sigma limits is 43.9.)

(c) Find the in-control ARL if 2-sigma limits are used on the
chart. How many false alarms would occur each month
with this chart? Is this in-control ARL performance satis-
factory? Explain your answer.

16-51. The depth of a keyway is an important part quality

characteristic. Samples of size n = 5 are taken every four hours

from the process and 20 samples are summarized as follows:

Sample X r
1 139.7 11
2 139.8 14
3 140.0 13
4 140.1 1.6
5 139.8 0.9
6 139.9 1.0
7 139.7 14
8 140.2 1.2
9 139.3 11

10 140.7 1.0
11 138.4 0.8
12 138.5 0.9
13 137.9 1.2
14 138.5 11
15 140.8 1.0
16 140.5 1.3
17 139.4 14
18 139.9 1.0
19 1375 15
20 139.2 1.3
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(a) Using all the data, find trial control limits for X and R
charts. Is the process in control?

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.
Then, estimate the process standard deviation.

(c) Suppose that the specifications are at 140 = 2. Using the
results from part (b), what statements can you make about
process capability? Compute estimates of the appropriate
process capability ratios.

(d) To make this process a “6-sigma process,” the variance o?
would have to be decreased such that PCR, = 2.0. What
should this new variance value be?

(e) Suppose the mean shifts to 139.7. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

16-52. A process is controlled by a P chart using samples of

size 100. The center line on the chart is 0.05.

(a) What is the probability that the control chart detects a shift
to 0.08 on the first sample following the shift?

(b) What is the probability that the control chart does not de-
tect a shift to 0.07 on the first sample following the shift
but does detect it on the second sample?

(c) Suppose that instead of a shift in the mean to 0.07, the
mean shifts to 0.10. Repeat parts (a) and (b).

(d) Compare your answers for a shift to 0.07 and for a shift to
0.10. Explain why they differ. Also, explain why a shift to
0.10 is easier to detect.

16-53. Suppose the average number of defects in a unit is

known to be 8. If the mean number of defects in a unit shifts to

16, what is the probability that it will be detected by the U

chart on the first sample following the shift

(a) if the sample sizeisn = 4?

(b) if the sample size isn = 10?

Use a normal approximation for U.

16-54. Suppose the average number of defects in a unit is

known to be 10. If the mean number of defects in a unit shifts

to 14, what is the probability that it will be detected by the U

chart on the first sample following the shift

(@) if the sample sizeisn = 1?

(b) if the sample size isn = 4?

Use a normal approximation for U.

16-55. Suppose that an X control chart with 2-sigma lim-

its is used to control a process. Find the probability that a

false out-of-control signal will be produced on the next sam-

ple. Compare this with the corresponding probability for the

chart with 3-sigma limits and discuss. Comment on when

you would prefer to use 2-sigma limits instead of 3-sigma

limits.

16-56. Consider the X control chart with 2-sigma limits in

Exercise 16-50.

(@) Find the probability of no signal on the first sample but a
signal on the second.

(b) What is the probability that there will not be a signal in
three samples?

16-57. Suppose a process has a PCR = 2, but the mean is

exactly three standard deviations above the upper specifica-

tion limit. What is the probability of making a product outside

the specification limits?

16-58. Consider the hardness measurement data in Exercise

16-9. Set up a CUSUM scheme for this process using . = 50

and o = 2,sothat K = 1and H = 10. Is the process in control?

16-59. Consider the data in Exercise 16-10. Set up a
CUSUM scheme for this process assuming that i = 80 is the
process target. Explain how you determined your estimate of
o and the CUSUM parameters K and H.

16-60. Reconsider the data in Exercise 16-12. Construct a
CUSUM control chart for this process using p, = 500 as the
process target. Explain how you determined your estimate of
o and the CUSUM parameters H and K.

MIND-EXPANDING EXERCISES

16-61. Suppose a process is in control, and 3-sigma
control limits are in use on the X chart. Let the mean
shift by 1.50. What is the probability that this shift will
remain undetected for three consecutive samples? What
would its probability be if 2-sigma control limits were
used? The sample size is 4.

16-62. Consider an X control chart with k-sigma con-
trol limits. Develop a general expression for the proba-
bility that a point will plot outside the control limits
when the process mean has shifted by & units from the
center line.

16-63. Suppose that an X chart is used to control a
normally distributed process and that samples of size »
are taken every n hours and plotted on the chart, which
has &-sigma limits.

(a) Find a general expression for the expected number
of samples and time that will be taken until a false
action signal is generated.

(b) Suppose that the process mean shifts to an out-of-
control state, say w; = pg + do. Find an expres-
sion for the expected number of samples that
will be taken until a false action is generated.
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MIND-EXPANDING EXERCISES

(c) Evaluate the in-control ARL for £ = 3. How, does
this change if £ = 2? What do you think about the
use of 2-sigma limits in practice?

(d) Evaluate the out-of-control ARL for a shift of 1
sigma, given that » = 5.

16-64. Suppose a P chart with center line at p with -

sigma control limits is used to control a process. There is

a critical fraction defective p, that must be detected with

probability 0.50 on the first sample following the shift to

this state. Derive a general formula for the sample size
that should be used on this chart.

16-65. Suppose that a P chart with center line at p and
k-sigma control limits is used to control a process. What
is the smallest sample size that can be used on this control
chart to ensure that the lower control limit is positive?

16-66. A process is controlled by a P chart using sam-
ples of size 100. The center line on the chart is 0.05.
What is the probability that the control chart detects a
shift to 0.08 on the first sample following the shift?
What is the probability that the shift is detected by at
least the third sample following the shift?

16-67. Consider a process where specifications on a
quality characteristic are 100 = 15. \We know that the stan-
dard deviation of this normally distributed quality charac-
teristic is 5. Where should we center the process to mini-
mize the fraction defective produced? Now suppose the
mean shifts to 105 and we are using a sample size of 4 on
an X chart. What is the probability that such a shift will be
detected on the first sample following the shift? What is the
average number of samples until an out-of-control point
occurs? Compare this result to the average number of ob-
servations until a defective occurs (assuming normality).
16-68. The NP Control Chart. An alternative to the
control chart for fraction defective is a control chart based
on the number of defectives, or the NP control chart. The
chart has centerline at np, and the control limits are

UCL = np + 3Vnp(1 — p)
LCL = np — 3V np(1 — p)

and the number of defectives for each sample is plotted
on the chart.
(a) \erify that the control limits given above are correct.

(b) Apply this control chart to the data in Example 16-4.
(c) Will this chart always provide results that are equiv-
alent to the usual P chart?

16-69. The EWMA Control Chart. The exponen-
tially weighted moving average (or EWMA) is defined
as follows:

Z,=AX,+(1—-MNZ_,

where 0 < \ = 1, and the starting value of the EWMA at
time t = 0 is Zy = g (the process target). An EWMA
control chart is constructed by plotting the Z, values on a
chart with center line at ., and appropriate control limits.
(a) Verify that E(Z)) =

(b) Let o? be ¥(Z,), and show that

ot =2 (325 ) - @ a7

(c) Use the results of part (b) to determine the control
limits for the EWMA chart.

(d) AsA — 1, the EWMA control chart should perform
like a standard Shewhart X chart. Do you agree with
this statement? Why?

(e) As A — 0, the EWMA control chart should perform
like a CUSUM. Provide an argument as to why this
is so.

(f) Apply this procedure to the data in Example 16-2.

16-70. Standardized Control Chart. Consider the P

chart with the usual 3-sigma control limits. Suppose that

we define a new variable:

i = —F7———
P(1-P)
—
as the quantity to plot on a control chart. It is proposed that
this new chart will have a center line at 0 with the upper
and lower control limits at =3. Verify that this standard-
ized control chart will be equivalent to the original p chart.
16-71. Unequal Sample Sizes. One application of the
standardized control chart introduced in Exercise 16-70
is to allow unequal sample sizes on the control chart.
Provide details concerning how this procedure would be
implemented and illustrate using the following data:

Sample, i 1 2 3 4 5 6 7 8 9 10
n; 20 25 20 25 50 30 25 25 25 20
D 0.2 0.16 0.25 0.08 0.3 0.1 0.12 0.16 0.12 0.15

647
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IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

ARL

Assignable causes

Attributes control
charts

Average run length

C chart

Cause-and-effect
diagram

Center line

Chance causes

Control chart

Control limits

Cumulative sum control
chart

Defect concentration
diagram

Defects-per-unit chart

Deming’s 14 points

False alarm

Fraction-defective
control chart

Implementing SPC

Individuals control
chart

Moving range

NP chart

P chart

Pareto diagram

PCR

PCR,,

Problem-solving
tools

Process capability

Process capability
ratio

Quality control

R chart

Rational subgroup

Run rule

S chart

Shewhart control chart

Six-sigma process

Specification limits

Statistical process
control

Statistical quality
control

U chart

V mask

Variables control charts

Warning limits

Western Electric rules

X chart
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