Integration of a physically based distributed hydrologic and hydraulic model for flood prediction in Thu Bon – Vu Gia river system, Vietnam

Msc. Dang Thanh Mai

Introduction

The Thu Bon – Vu Gia river system located in Central Vietnam is often affected by large floods and inundations causing considerable damages to people and infrastructure.

The floods are a serious and major issue for the development of Thu Bon – Vu Gia Basin

The flood protection and mitigation in the region has led to heighten interest in real-time flood forecasting systems in which the crucial component is the flood forecasting modelling.

Introduction

The main objective : to develop a tool for flood forecasting using integration of a physically based distributed hydrological and hydraulic models.

Models used:

GIS based distributed hydrological model : WETSPA

One-dimensional hydraulic model: HECRAS

3 steps are implemented

- Calibration and verification of WETSPA model
- Calibration and verification of HECRAS model
- Development of software to integrate two models and can be used in real-time flood forecast in the study area

Introduction

• Wetspa model is a grid based, fully spatially distributed model for water and energy transfer between soil, plants and atmosphere a grid based.

• Due to the complexity of Thu Bon – Vu Gia river system and effects of tide to flow in the downstream area. The one-dimensional unsteady state flow model HECRAS (USACE, 2001) is chosen for coupling with the Wetspa model to simulate peak discharge, flow and water level hydrographs in this area.

• The integration of two models is becoming more capable for flood prediction, and decision making in the river.

• The WetSpa model calculates discharges from rainfall and potential evaporation inputs.

• The simulated flows from the Wetspa model are used as the input for the HECRAS model for flow routing at an upstream discharge point.

Structure of the WetSpa and HECRAS models and their coupling

WetSpa?

Water and Energy Transport between Soil, Plants and Atmosphere

Hydrological model:

Simulating hydrological processes

 $V = CN(\theta/\theta_s)^{\alpha}$

D

θ

R

Mixture of empirical and physically based equations:

• Evapotranspiration (E)

• Runoff Production (V)

Potential Runoff Coefficient (C) C = f(slope, soil type, land use)

 $E = c_e E_p \left(\frac{\theta - \theta_w}{\theta_f - \theta_w} \right) \qquad \text{for } \theta_w < \theta < \theta_f$ $E = c_e E_p \qquad \text{for } \theta \ge \theta_f$

• **Percolation (R)** $R = K(\theta) = K_s \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{(2+3B)/B}$

• Interflow (F) $F = c_i DS_0 K(\theta) / W$

Flow routing

Diffusive Wave Approximation:

Model Evaluation

Code	Criteria	Description					
C1	$\frac{\sum_{i} Qc_{i}}{\sum_{i} Qo_{i}} - 1$	Model bias, ability to reproduce water balance with best value of 0					
C2	$\frac{\sum_{i} \left(Q c_{i} - \overline{Q o_{i}} \right)^{2}}{\sum_{i} \left(Q o_{i} - \overline{Q o_{i}} \right)^{2}}$	Model confidential coefficient with best value of 1					
C3	$1 - rac{\displaystyle\sum_{i} (Qc_i - Qo_i)^2}{\displaystyle\sum_{i} (Qo_i - \overline{Qo})^2}$	Nash-Sutcliffe efficiency, ability to reproduce time evolution of discharges with best value of 1					
C4	$1 - \frac{\sum_{i} (\ln(Qc_i) - \ln(Qo_i))^2}{\sum_{i} (\ln(Qo_i) - \ln(\overline{Qo}))^2}$	Logarithmic Nash-Sutcliffe efficiency, ability to reproduce time evolution of low flow discharges with best value of 1					
C5	$1 - \frac{\sum_{i} (Qo_{i} + \overline{Qo})(Qc_{i} - Qo_{i})^{2}}{\sum_{i} (Qo_{i} + \overline{Qo})(\overline{Qo} - Qo_{i})^{2}}$	Adapted Nash-Sutcliffe efficiency, ability to reproduce time evolution of high flow discharges with best value of 1					

HECRAS

- HECRAS is a hydraulic model package of the US Army Corps of Engineers - Hydrologic Engineering Center (HEC).
- The package contains three one-dimensional hydraulic analysis components for:
- (1) steady flow water surface profile computations;
- (2) unsteady flow simulation;
- (3) movable boundary sediment transport computations.

The Unsteady flow is simulated based on two equations (USACE, 2001)

The Continuity Equation The Momentum equation

The Continuity Equation

$$\frac{\partial \omega}{\partial t} + \frac{\partial S}{\partial t} + \frac{\partial Q}{\partial x} - q_1 = 0$$

Where: ω – Cross-sectional area; t – time; Q – flow ; S – storage from non conveying portions of cross section; X – distance along the channel; ql – Lateral inflow per unit distance

The above equation can be written for the channel and floodplain:

$$\frac{\partial \omega_f}{\partial t} + \frac{\partial S}{\partial t} + \frac{\partial Q_f}{\partial x_f} = q_l + q_c \qquad \qquad \frac{\partial Q_c}{\partial x_c} + \frac{\partial A_c}{\partial t} = q_l$$

Where the subscripts c and f refer to the channel and floodplain, respectively, ql is the lateral inflow per unit length of floodplain, and qc and qf are the exchanges of water between the channel and the floodplain.

The Momentum equation:

$$\frac{\partial Q}{\partial t} + \frac{\partial (VQ)}{\partial x} + g\omega \left(\frac{\partial z}{\partial x} + S_f\right) = 0$$

The above equation can be written for the channel

$$\frac{\partial Q_c}{\partial t} + \frac{\partial (V_c Q_c)}{\partial x_c} + g \omega_c \left(\frac{\partial z}{\partial x_c} + S_{f_c}\right) = M_f$$

And for the floodplain

$$\frac{\partial Q_f}{\partial t} + \frac{\partial (V_f Q_f)}{\partial x_f} + g \omega_f \left(\frac{\partial z}{\partial x_f} + S_{ff}\right) = M_c$$

Where Q – Discharge; t – time; V – velocity; x – distance along the channel g - acceleration of gravity; ω- Cross-sectional area; Sf – friction slope Mf and Mc are the momentum fluxes per unit distance exchange between the floodplain and the channel.

The study area

Son Trà Thank My Nong San OQué Son Trao (Hiên) 📕 Hếp đức **D**liên P **€Kbam**Đữc GHI CHÚ Tram Thuỷ văn đo X,H,Q: 2 tram Trạm Thuỷ văn đo X,H: 7 trạm ጰ Tram khí tương: 3 tram Tram do muta: 3 tram Ă Tram hải văn: 1 tram

Thu Bon – Vu Gia river system and location of hydro-meteorological stations.

BẢN ĐỒ MẠNG LƯỚI SÔNG VÀ TRẠM ĐO KTTV LƯU VỰC SÔNG THU BỒN - VU GIA

Some characteristics of the study area

- Annual average temperature ranges from 21°C to 26 °C
- Annual average relative humidity of 85%.
- Mean annual precipitation from 1960 to 4000 mm.
- Rainy season prolongs from September to December accounting from 60-80 % of yearly rainfall.
- The high floods of Thu Bon Vu Gia occur usually from October to November.
- The effect of the upstream tidal influence is clearly visible during periods of low water
- Flood and inundation usually follows heavy rains, typhoon, and tropical depression. Large floods only occur under the affect of synoptic combination of typhoon, tropical depression with cold air surge.

Graph of dry season, rainy season and yearly precipitation in Thu Bon – Vu Gia river basin

Input data for models

GIS data:

• DEM(50x50 m) map: derived from 1:50.000 resolution elevation contour maps.

- Land use map: consists of 25 land use types. A reclassification is made using nine land use types.
- Soil type map: The map is reclassified to 12 USDA soil texture classes

Hydrological data:

- 14 rain gauges and stream gauges data : Daily and 6-hourly time step.
- Tidal data available at Da Nang for a long period of time
- River geometry and cross section data: 320 cross sections

Rainfall calculation

The grid of precipitation was created using Thiessen polygon method

Calibration and verification of WETSPA model

Location of Sub-Catchments

Model Parameter Derivation

Some parameter maps of Nong Son sub-catchment.

Calibration and verification of WETSPA model

Model Parameters: ✓ Distributed parameters: Maps

✓ Global parameters : 8 parameters

Model Calibration </ <p>

Data: 6 hourly data: flood season 2002-2005

Model verification

- 6 hourly data: flood season 2006-2007
- **Model Evaluation**
- ✓ Graphical comparisons
- ✓ Statistical comparisons

Global parameter of Thanh My and Nong Son sub-catchment.

	ki	Kg	K_ss	K_ep	g0	g_max	k_run	P_max
Thành Mỹ	1.24	0.01	0.8	1.0	200	500	7.53	44.83
Nông Sơn	0.8	0.07	0.65	0.9	400	600	4.5	30

Parameter Results

Calibration process was performed mainly for the global parameters:

- The interflow scaling factor was calibrated by matching the computed discharge with the observed discharge for the recession part of the flood hydrograph.
- Groundwater flow recession coefficient was obtained by the analysis of recession curves at discharge gauging stations.
- Refinement of this base flow recession coefficient was necessary to get a better fit for the low flows.

• The initial soil moisture and initial groundwater storage were adjusted based on the comparison between the calculated and observed hydrographs for the initial period.

• And the runoff exponent and the rainfall intensity threshold were adjusted based on the agreement between calculated and observed flows for the small storms with lower rainfall intensity.

year	C1	C2	С3	C4	C5	S/σ
1998	0.15	0.7	0.71	0.8	0.68	0.6
1999	0.2	0.72	0.7	0.82	0.66	0.58
2001	0.1	0.83	0.83	0.91	0.84	0.45
2002	0.12	0.8	0.8	0.87	0.79	0.5
2003	0	0.76	0.76	0.92	0.74	0.56
2004	0.12	0.81	0.71	0.83	0.71	0.59
2005	0.3	0.73	0.73	0.87	0.68	0.6
Mean	0.15	0.76	0.75	0.86	0.73	0.55
Max	0.3	0.83	0.83	0.92	0.84	0.6
Min	0.05	0.7	0.7	0.8	0.66	0.45

Year	C1	C2	C3	C4	C5	<mark>\$/σ</mark>
2006	0.05	0.78	0.78	0.85	0.78	0.54
2007	0.14	1.15	0.67	0.86	0.74	0.53
Mean	0.1	0.97	0.73	0.86	0.76	0.54
Max	0.14	1.15	0.78	0.86	0.78	0.54
Min	0.05	0.78	0.67	0.85	0.74	0.53

Evaluated result

Thanh My station on Vu Gia river

Calibration result

Verification result

Calibration result :

Observed and calculated 6-hourly water level in flood season 2004 at Thanh My station on Vu Gia river

📮 Hiệu chỉnh dự báo

Verification result :

Observed and calculated 6-hourly water level in flood season 2007

at Thanh My station on Vu Gia river

Year	C1	C2	C3	C4	C5	S/σ
1998	0.1	0.92	0.8	0.90	0.87	0.3
1999	0.2	0.85	0.8	0.85	0.86	0.35
2001	0	0.96	0.96	0.96	0.97	0.21
2002	0	0.95	0.95	0.95	0.96	0.24
2003	0.05	0.96	0.96	0.93	0.97	0.21
2004	0.05	0.96	0.96	0.95	0.97	0.21
2005	0	0.95	0.95	0.91	0.96	0.23
TB	0.06	0.94	0.91	0.92	0.94	0.25
Max	0.2	0.96	0.96	0.96	0.97	0.35
Min	0	0.85	0.8	0.85	0.86	0.21

Năm

0.2	0.96	0.96	0.96	0.97	0.35	1
0	0.85	0.8	0.85	0.86	0.21	
				1		
C1	C2	C3	C4	C5	<u>S</u> /σ	1
0.02	0.96	0.96	0.97	0.97	0.21	_

Evaluated result

Nong Son station on Thu Bon river

Calibration result

Verification result

2006	0.02	0.96	0.96	0.97	0.97	0.21	14
2007	0.012	0.97	0.97	0.85	0.98	0.16	
TB	0.016	0.97	0.97	0.91	0.98	0.19	
Max	0.02	0.97	0.97	0.97	0.98	0.21	
Min	0.012	0.96	0.96	0.85	0.97	0.16	

🗅. HiÖu chØnh dù b ,o

Calibration result :

Observed and calculated 6-hourly water level in flood season 2003 at Nong Son station on Thu Bon river

🔼 Hiệu chỉnh dự báo

Verification result :

Observed and calculated 6-hourly water level in flood season 2007

at Nong son station on Thu Bon river

Result

• The model performance is satisfactory for both calibration and validation periods

• Flow peak discharges are quite well reproduced: the Nash-Sutcliffe coefficients were between 0,64 to 0,82; model bias within the range of -0.09 to 0.15; model determination coefficient within the range of 0.82 to 1.05; the flow efficiency coefficient within the range of 0.54 to 0.9, while the efficiency coefficient ranges from 0.60 to 0.9 for low-flow, and 0.56 to 0.92 for high-flow.

• The model calculation results have a good agreement with observed hydrographs.

- The model can well reproduce high flows, but low flows are a little under estimated
- Evaluation criteria for both calibration and verification show that model is reliable performance and give a reperesentation of both low flow and high flow

Calibration and verification of HECRAS model

Three steps to flood simulation using the HECRASS model are performed including

- 1 Processing the geometry data in HECRAS;
- 2 Integration of hydrologic data as initial conditions and boundary

conditions in the HECRAS unsteady flow data file;

3 - Calibration and simulation flood using HECRAS model

Geometric data for downstream area of Thu bon - River basin

The flows of the upstream catchments which were results of Wetspa model were linked with the river network in the downstream area as upstream boundary condition

Calibration and verification of HECRAS model

- Hydrographs of the flood season from 2002 to 2007, obtained from the
 Wetspa model for upstream sub-catchments of Vu Gia and Thu Bon
 branches are used as upstream boundary conditions.
- Tidal hydrographs recorded at Da Nang are used as a downstream

boundary condition for the river network

• The initial flow conditions are the base flow conditions for Vu Gia and Thu

Bon branches

Calibration and verification of HECRAS model

- Data for calibration is 6-hourly water level hydrograph at Ai Nghia, Giao Thuy and Cau Lau station from 2002 to 2005.
- For model verification, the calibrated parameters are used to simulate the 6-hourly stream flow for flood seasons from 2006 and 2007
- The calibration adjustments to HECRAS parameters were made in Manning's *n*.

 Model calibration was discrete into two schemes: Rough scale, Delicate scale:

Rough scale: The calibration process divides the Manning's values into 0.005 interval from the values of 0.02 to 0.05 by applying statistical method to finally evaluate the best interval value as an input for next step.

Delicate scale: The calibration process divides the Manning's values into 0.001 interval from the selected rough scale values and applying statistical method to evaluate the best n Manning's values for this study

1	River	Reach	n coef.
1		Nông Sơn -Quảng Huế	
2	Thu Bồn	Quảng Huế - Vĩnh Điện	0.015 - 0.061
3		Vĩnh Điện - Cửa Đại	0.025 -0.055
4		Thành Mỹ - Quảng Huế mới	0.025 - 0.035
5		Quảng Huế mới - Quảng Huế cũ	0.020 - 0.040
6	Vu Gia	Quảng Huế cũ - Ái Nghĩa	0.010 - 0.040
7		Ái Nghĩa - Yên	0.010 - 0.045
8		Yên - Hàn	0.025 - 0.060
9		Thu Bồn - Thanh Quýt	0.025 - 0.030
10	Vĩnh Điện	Vĩnh Điện Thanh Quýt - Quá Giáng	
11		Quá Giáng - Hàn	0.025 - 0.030
12		Sông Mới	0.035 - 0.050
13	Quảng Huế	Sông Cũ	0.025 - 0.035
14		Nhập lưu	0.025 - 0.035
15	Lạc Thành	Lạc Thành	0.025 - 0.030
16	Quá Giáng	Quá Giáng	0.025 - 0.030
17	La Thọ- Thanh Quýt	La Thọ-Thanh Quýt	0.025 - 0.030

Results of Parameter calibration

Năm	C1	C2	C3	C4	C5	<u></u>
1998	0.05	0.8	0.78	0.83	0.84	0.35
1999	-0.04	0.84	0.8	0.82	0.85	0.4
2001	-0.014	0.81	0.83	0.87	0.8	0.3
2002	-0.1	0.93	0.93	0.93	0.93	0.27
2003	0.15	0.89	0.94	0.95	0.94	0.26
2004	-0.1	0.8	0.85	0.88	0.88	0.36
2005	0.02	0.74	0.74	0.71	0.76	0.59
TB	-0.005	0.83	0.839	0.856	0.857	0.361
Max	0.15	0.93	0.94	0.95	0.94	0.59
Min	-0.1	0.74	0.74	0.71	0.76	0.26

Năm	C1	C2	C3	C4	C5	<mark>S/σ</mark>
2006	0.015	0.95	0.95	0.95	0.95	0.23
2007	0.12	0.87	0.87	0.88	0.87	0.38
ТВ	0.0675	0.91	0.91	0.915	0.91	0.305
Max	0.12	0.95	0.95	0.95	0.95	0.38
Min	0.015	0.87	0.87	0.88	0.87	0.23

Evaluated result

Ais Nghia station on Vu Gia river

Calibration result

Verification result

📬. HiÖu chØnh dù b ,o

Calibration result :

Observed and calculated 6-hourly water level in flood season 2003 at Ai Nghia station on Thu Bon river

📮 Hiệu chỉnh dự báo

Verification result :

Observed and calculated 6-hourly water level in flood season 2007

at Ai Nghia station on Thu Bon river

Năm	C1	C2	C3	C4	C5	<mark>S/σ</mark>	
1998	0.12	0.76	0.8		0.77	0.45	
1999	0.15	0.8	0.82		0.83	0.48	
2001	-0.16	0.68	0.79		0.82	0.55	
2002	0.1	0.62	0.78		0.84	0.6	
2003	0.06	0.85	0.87		0.94	0.39	
2004	-0.12	0.78	0.76		0.85	0.47	
2005	0.05	0.93	0.93		0.96	0.27	
TB	0.029	0.774	0.821		0.859	0.459	
Max	0.15	0.93	0.93		0.96	0.6	
Min	-0.16	0.62	0.76		0.77	0.27	

Năm	C1	C2	C3	C4	C5	<u></u> S/σ
2006	0.2	0.75	0.75		0.95	0.57
2007	-0.1	0.96	0.96		0.8	0.21
ТВ	0.05	0.855	0.855		0.875	0.39
Max	0.2	0.96	0.96		0.95	0.57
Min	-0.1	0.75	0.75		0.8	0.21

Evaluated result

Cau Lau station on Thu Bon river

Calibration result

Verification result

Calibration result :

Observed and calculated 6-hourly water level in flood season 2005 at Cau Lau station on Thu Bon river

🕽. HiÖu chØnh dù b ,o

Verification result :

Observed and calculated 6-hourly water level in flood season 2007

at Cau Lau station on Thu Bon river

Result

- The model performance is satisfactory for both calibration and validation periods
- The calculated hydrograph is generally in a good agreement compared with the observed hydrograph.
- The peak flood at Ai Nghia and Cau Lau is good simulated with the maximum error of 1,05 m.
- Peak discharges, concentration time, and flow volumes are quite well predicted.
- These results for calibration and verification indicate that the model can
 represent both low-flow and high-flow runoff.

Flood forecasting software

Số thủ tư	thoi gian Ngày	Gió	W71526	W71533	W71527	W71521	W71528	W71529	W71530	W71531	W71532	RKDUC	RTMY	RHIEN	RHKHACH	RANGHIA	RCI
1	9/1/2008 01/09/2008	1	1170	861	317	14	1306	443	174	16	5	0	0	0	0	0	
2	9/1/2008 01/09/2008	7	1234	887	324	-14	1298	428	168	1	2	0	2	0	0	a	_
3	9/1/2008 01/09/2008	13	1228	926	349	16	1306	425	163	29	11	0	0	0	0	0	
4	9/1/2008 01/09/2008	19	1207	911	387	-46	1310	422	164	-37	-39	0	0	0	0	a	
5	9/2/2008 02/09/2008	1	1192	901	385	22	1346	430	166	24	8	0	0	0	0	0	
6	9/2/2008 02/09/2008	7	1187	898	373	-29	1376	439	165	-18	-20	Ø	0	0	0	0	
7	9/2/2008 02:09/2008	13	1182	887	369	18	1346	462	169	29	15	0	0	0	0	0	
8	9/2/2008 02/09/2008	19	1176	878	361	-41	1318	456	176	-31	-38	0	14	0	18	0	
9	9/3/2008 03/09/2008	1	1195	918	356	22	1316	454	176	28	18	0	0	0	0	0	
10	9/3/2008 03/09/2008	7	1218	937	361	-30	1314	456	174	-21	-30	0	0	0	0	a	
11	9/3/2008 03/09/2008	13	1195	914	407	20	1350	453	183	33	21	0	0	0	0	0	
12	9/3/2008 03/09/2008	19	1188	900	305	-28	1325	448	181	-15	.75	a	0	0	0	0	
13	9:4:2008 04:09:2008	1	1180	888	385	26	1306	444	176	29	20	0	0	0	0	0	
14	9/4/2008 04/09/2008	7	1176	886	363	-23	1297	440	172	-10	.77	a	0	0	0	0	
15	9:4:2008 04:09:2008	18	1182	892	360	10	1207	477	160	18	15	0	õ	0	0	0	
16	94/2008 04/09/2008	10	1170	888	357	-20	1205	417	164	-6	-13	0	0	ő	ů.	0	
17	9.5.2008 05.09.2008	1	1163	872	350	21	1201	412	150	31	27	0	0	0	0	0	
18	9/5/2008 05/09/2008	7	1156	863	344	-21	1287	406	155	-20	-26	0	0	0	0	0	
19	9/5/2008 05/09/2008	13	1153	855	331	3	1286	403	151	8	7	0	0	0	0	0	
20	9/5/2008 05/09/2008	19	1151	852	319	-14	1285	400	146	-4	-7	0	21	0	0	0	
21	9/6/2008 06/09/2008	1	1154	874	325	16	1284	400	143	28	24	0	0	0	0	0	
22	9/6/2008 06/09/2008	7	1156	882	330	-26	1283	300	141	-20	-30	0	0	0	0	0	
23	9/6/2008 06/09/2008	13	1154	879	338	-13	1284	300	143	-14	-13	0	0	0	0	0	
24	9/6/2008 06/09/2008	19	1160	872	346	-6	1289	400	144	0	-1	0	0	0	0	0	
25	9/7/2008 07/09/2008	1	1156	870	330	16	1286	300	144	32	23	0	0	0	0	0	
26	9/7/2008 07/09/2008	7	1140	868	328	-18	1282	308	144	-11	-25	0	0	0	ů,	0	
27	9/7/2008 07/09/2008	13	1146	866	329	-25	1286	398	143	-26	-28	0	0	0	0	0	
28	9/7/2008 07/09/2008	10	1153	863	328	-2	1305	406	141	7	1	0	0	0	1	0	
20	9/8/2008 08/09/2008	1	1153	858	322	10	1301	400	141	35	-33	0	1	0	0	0	
30	0/8/2008 08/09/2008	7	1150	853	310	10	1280	408	145	1	-12	0		0	0	0	
31	9/8/2008 08/09/2008	13	1152	852	314	-26	1200	406	146	-30	-36	0	0	0	0	0	
32	9/8/2008 08/09/2008	10	1150	857	300	0	1300	400	144	8	0	0	1	0	0	1	
33	0/0/2008 00/00/2008	1	1155	857	311	26	1310	405	144	30	31	0	0	0	0	0	
34	9/9/2008 09/09/2008	7	1150	854	315	0	1334	420	148	12	-5	0	0	0	0	0	
35	0/0/2008 00/00/2008	13	1164	858	317	-32	1328	427	150	-32	.41	0	0	0	0	0	
36	9/9/2008 09/09/2008	10	1162	872	312	-52	1317	427	153	10	-41	1	0	0	0	0	
37	0/10/2008 10/09/2008	1	1163	868	318	10	1307	444	160	20	34	4	12	10	17	0	
38	9/10/2008 10/09/2008	7	1163	863	338	20	1325	430	164	28	17	6	0	20	17	0	
30	9/10/2008 10/09/2008	12	1168	860	374	-32	1360	436	161	-20	-30	0	14	0	11	16	
40	0/10/2008 10/00/2008	10	1187	866	375	1	1357	457	164	6	2	8	47	2	11	25	
41	0/11/2008 11/00/2008	19	1102	876	330	24	1335	462	172	25	78	7	9	0	4	6	
12	0/11/2008 11/09/2008	7	1192	875	330	27	1333	402	172	36	20	0	2	7	1	0	
42	0/11/2008 11/09/2008	12	1101	872	245	22	1345	455	1.27	20	20	0	2		1	0	
122	ALL COMPANY AND A COMPANY	250	113(3)	9(3)	14.1	-141	1.14.11	1.11	6661	-101		10	11	1//2		10	

🐮 start	D:/webspathut	🙀 WideThoBoo	Ch-ng Tre	ah 🔐 🗶	1	Document1 - M.	y untiled - Paint	1				(<u>B</u>	(🖲 👷 🎕 🗐 🌳 Э.54 РМ
	🛋 Chuẩn	bị số liệu	,	5.5 4 [7	<u>~ / ~</u>	PROP 1 C			×6.1⊻	~~			N A
													*
	Từ	7 💌	Giờ	Ngày	10	•	Tháng	12	•	Năm	2008	•	A
	Đến	7 •	Giờ	Ngày	10	•	Tháng	12	•	Năm	2008	•	N
													1
			<u>T</u> hu	ực hiện					<u>K</u> ết	thúc			
			<u> </u>	19711		- 58	AL PLAN	220	1 V .	2 7	7 1. 1		b

Interface for updating observed rainfall and water level data

B 0 0 1 5 0 10 0

Interface for displaying observed data

Display hydrograph of water level and rainfall of all stations

Similar Bitte Molegan							الكالك.	
File Edit Format View Help								
Luong mua thuc do va du	bao							~
Thoi gian Thanh My	Hoi Khach	Ai Nghia	Cam Le	Hiep Duc	Nong Son	Giao thuy	Cau lau	
07 12 2008 13 3.5	0	0.7	0	5	4.5	2.5	0	
07 12 2008 19 1.5	0	0	0	3.3	3.5	1.2	0	Law.
08 12 2008 01 2.5	0	0	0	1	0	0	0	1 1
08 12 2008 07 1	1.5	0.7	1.3	1	0	0.8	0	1. 1
08 12 2008 13 1	0	2.7	6.3	1	3.5	3.5	10.5	7
08 12 2008 19 4	5.5	1.3	1.3	2.3	0	1.8	3.5	1
09 12 2008 01 0.5	0	0.3	0.5	3	0.5	0.2	7.5	
09 12 2008 07 0.5	0	2.3	3.7	2.3	0.5	1.8	3	
09 12 2008 13 0	0	0	0	0	0	0	0	and the second second
09 12 2008 19 0	0	0	0	0	0	0	0	
10 12 2008 01 0	0	0	0	0	0	0	0	-
10 12 2008 07 0	0	0	0	0	0	0	0	
								~
<							>	
Name I						the second second second second second		

le <u>E</u> dit <u>V</u> ier	w Insert Fo	imat Look	s <u>D</u> ata <u>J</u>	Mindow H	<u>t</u> elp																	rype a question to
) 📂 🖬 🗋) <i>(</i>) (<i>(</i>) ()	19 🔝	X 🗅 🖪	• 🍼 🖉	7 - (" -	🔒 Σ	- 2↓ Z↓		¥	0		*	I	3 <i>I</i> U		-	\$ % ,	00. 00.	谭谭	🖽 • 🙆 • ,	<u>A</u>	
	+	∱ Part	A:																			
A	B C	D	E	F	G	H	1	J	K	L.	M	N	0	Р	Q	R	S	Ť	U	V	w x	Y Z
Part A:	NongS	Son Nhanh6	Nhanh7	GiaoThu	y Nhanh8	CauLau	Nhanh9	HoiAn	ThanhM	ly SongBur	ng Nhanh1	SongCor	n Nhanh2	Nhanh3	AiNghia	Nhanh4	Nhanh5	TuyLoar	Cam Le	Tien Sa		
EC DSS Dat	ta Exchange					🔻 ×	hie Bientren	KiemNgl	nic Bientrer	Bientren	Bientren	Bientren	Bientren	Bientren	KiemNgh	nie Bientren	Bientren	Bientren	KiemNgh	nie Bienduoi		
e • Retrieve	• Store • Too	ols • Help •	D:\wetspath	hubon\hec\s	olieuhec.ds:	5	FLOW	STAGE	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	STAGE	FLOW	FLOW	FLOW	STAGE	STAGE		
	011011		0.00000			0110110	0801-Sep-0	1801-Sep-I	0801-Sep	0801-Sep-	0801-Sep-	J801-Sep-0	0801-Sep-	J801-Sep-0	1801-Sep-0	J801-Sep-	0801-Sep-0	801-Sep-	0801-Sep-0	0801-Sep-08		
Part E: Port E:	6HOU	AS 6HOUR	OPC	OPS	OPS	OPC	OPS	OPS	OPS	OPS	OPS	OPS	OPS	OPS	OPS	OPS	OPP	OPP	OPS	OPP		
Part F. Reg. Doto:	01.50	0001 Son	0901 See (005	005	005	0005	005	1901 Son	0801 Sep 1	0055 1901 Sep /	0801 Sep (005 1901 Sep /	005	005 901 Sec (005	0901 900 0	UDS INOI Son /	1901 Son /	005		
Beg. Date.	0001	0001-36p	0001-360-0	0001-360-	0001	0001-360-	0001	0001	0001	0001-360-1	0001	0001	0001	0001	0001	0001	0001-360-0	0001	0001	0001		
End Date:	09-Der	c-0809-Dec-	-0809-Dec-(0809-Dec-I	0809-Dec-l	0809-Dec-	0809-Dec-0	809-Dec-I	0809-Dec-	0809-Dec-l	0809-Dec-l	0809-Dec-f	0809-Dec-l	0809-Dec-0	809-Dec-0	1809-Dec-	0809-Dec-0	809-Dec-0	0809-Dec-0	1809-Dec-08		
End. Time:	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700		
Units:	m3/s	m3/s	m3/s	m	m3/s	m	m3/s	m	m3/s	m3/s	m3/s	m3/s	m3/s	m3/s	m	m3/s	m3/s	m3/s	m	m3/s		
Data Type In	dex																					
09	/01/200 145	5.21	8.67	1.74	6.09	0.16	20.78	0.05	120	77.75	4.3	48.61	2.29	2.33	3.17	1.74	0.8	27.23	0.14	0.34		
09	0/01/200-127	7.87	13.1	1.68	9.2	0.01	31.4	0.02	204	241.8	6.49	84.84	3.45	3.52	3.24	2.62	1.21	41	-0.14	0.23		
09	/01/200 125	7.8	12.98	1.63	9.12	0.29	31.13	0.11	195	329.49	6.42	83.27	3.41	3.48	3.49	2.6	1.2	40.41	0.16	0.12		
09	0/01/200:123	7.73	12.87	1.64	9.03	-0.37	30.86	-0.39	161	330.58	6.36	81.71	3.38	3.45	3.87	2.57	1.18	39.83	-0.46	0.01		
09	0/02/200 129	7.66	12.76	1.66	8.95	0.24	30.6	0.08	142	324.88	6.29	80.18	3.35	3.41	3.85	2.54	1.17	39.25	0.22	-0.17		
09	02/200 139	7.59	12.64	1.60	0.00	-0.10	20.00	-0.2	137	319.23	6.47	77.06	3.31	3.30	3.73	2.52	1.10	30.09	-0.29	-0.23		
09	02/200 170	7.51	12.01	1.09	0.70	0.29	20.94	0.15	102	209.92	6.11	75.95	3.20	3.35	3.69	2.49	1.15	30.13	0.10	-0.29		
00	03/200 152	7.38	12.39	1.76	8.62	0.28	29.04	0.18	145	304.8	6.32	75.00	3.31	3.37	3.56	2.4/	1.14	37.05	0.22	-0.20		
00	03/200 162	7.31	12.17	1.74	8.54	-0.21	20.34	-0.3	170	200.44	10.65	70 00	0.01	0.07	2.61	2.42	1.10	36.52	-0.3	-0.07		
09	03/200 158	7.24	12.05	1.83	8.46	0.33	29.1	0.21	Status	f Regular Int	erval Time S	eries Store			X	24	11	36	0.2	0.07		
09	/03/200 151	7.17	11.94	1.81	8.38	-0.15	28.86	-0.25								2.37	1.09	35,48	-0.28	0.16		
09	/04/200 146	7.11	11.83	1.76	8.31	0.29	28.62	0.2	- G	All regul	lar time serie	s data sets sel	lected were s	uccessfully st	ored.	2.35	1.08	34.98	0.26	0.23		
09	/04/200 141	7.04	11.73	1.72	8.23	-0.19	28.39	-0.27	- V	, i i i i i i i i i i i i i i i i i i i				· · ·		2.33	1.07	34.48	-0.23	0.19		
09	/04/200 126	6.98	11.62	1.69	8.16	0.18	28.15	0.15	1				1			2.3	1.06	33.99	0.1	0.13		
09	/04/200-119	6.92	11.52	1.64	8.08	-0.06	27.92	-0.13	1			OK				2.28	1.05	33.5	-0.2	0.01		
09	/05/200 115	6.86	11.42	1.59	8.01	0.31	27.7	0.27	1	_	_		_	_		2.26	1.04	33.03	0.21	-0.07		
09	/05/200 111	6.8	11.32	1.55	7.93	-0.2	27.47	-0.26	106	261.79	5.61	63.15	2.98	3.04	3.44	2.23	1.03	32.56	-0.21	-0.13		
09	/05/200 109	6.74	11.22	1.51	7.86	0.08	27.25	0.07	103	257.56	5.55	62.02	2.95	3.01	3.31	2.21	1.02	32.09	0.03	-0.17		
09	/05/200 107	6.68	11.12	1.46	7.79	-0.04	27.03	-0.07	101	253.41	5.49	60.92	2.92	2.98	3.19	2.19	1.01	31.64	-0.14	-0.15		
09	06/200/107	6.62	10.03	1.43	7.65	0.28	26.82	0.24	104	249.98	0.3	60.06	2.89	2.95	3.25	2.17	0.00	31.19	0.16	-0.07		
09	06/200/106	6.51	10.95	1.41	7.69	0.14	20.0	-0.5	100	204.06	0.00	57.71	2.00	2.92	3.3	2.15	0.99	30.75	0.12	0.05		
09	06/200 107	6.45	10.04	1.40	7.51	0.14	26.18	-0.01	110	237.81	5.37	56.67	2.84	2.86	3.46	2.10	0.90	20.88	-0.06	0.25		
09	07/200 106	6.39	10.65	1 44	7 45	0.32	25.98	0.23	106	233.5	5.31	55.67	2.78	2.84	3.39	2.09	0.96	29.46	0.16	0.31		
09	/07/200 105	6.34	10.56	1.44	7.38	-0.11	25.77	-0.25	100	229.75	5.26	54.7	2.75	2.81	3.28	2.08	0.96	29.05	-0.18	0.29		
09	/07/200 105	6.28	10.47	1.43	7.32	-0.26	25.57	-0.28	98	226.08	5.21	53.74	2.73	2.78	3.29	2.05	0.94	28.62	-0.25	0.21		
09	/07/200 111	6.23	10.38	1.41	7.25	0.07	25.38	0.01	103	222.47	5.16	52.8	2.7	2.75	3.28	2.03	0.93	28.19	-0.02	0.11		
09	/08/200 114	6.18	10.3	1.43	7.19	0.35	25.18	-0.33	103	218.93	5.11	51.88	2.67	2.73	3.22	2.01	0.92	27.78	0.19	0.01		
09	/08/200 112	6.12	10.21	1.47	7.12	0.01	24.98	-0.12	100	215.62	5.06	50.98	2.65	2.7	3.19	1.99	0.91	27.38	0.1	-0.07		
09	/08/200 111	6.07	10.11	1.46	7.06	-0.3	24.79	-0.36	102	214.25	5.01	50.08	2.62	2.67	3.14	1.97	0.9	27	-0.26	-0.18		
09	/08/200 113	6.01	10.02	1.44	7	0.08	24.6	0	109	209.52	4.95	49.19	2.59	2.65	3.09	1.95	0.9	26.61	0.09	-0.22		
09	/09/200:120	5.98	10.06	1.44	6.93	0.39	24.42	0.34	105	205.22	4.9	48.34	2.57	2.62	3.11	1.93	0.89	26.24	0.26	-0.11		
09	//09/200-121	5.92	9.91	1.48	6.87	0.12	24.19	-0.05	109	202.02	4.86	47.51	2.54	2.59	3.15	1.91	0.88	25.86	0	-0.06		
09	109/200-126	5.84	9.75	1.5	6.8	-0.32	23.96	-0.41	114	198.79	4.81	46.68	2.52	2.57	3.17	1.89	0.87	25.49	-0.32	0.01		
> H\dat	ta /														<							

Solieuhec.xis

Interface for automatic updating boundary condition for HECRAS model

HECRAS implementation

🖌 VuGaThuBon - .

help.doc - Micro...

🥶 start 🛛 💓 D:\wetspathub...

HEC-RAS 4.	Beta	
File Edit Ru	View Options Help	
FB X	- <u>-</u>	∠¥∟≝ ∎⊞₽∞
Project:	Mo phong lu song Thu Bon - ∨u Gia	D:\wetspathubon\hec\TB_VG.prj
Plan:	Plan 01	D:\wetspathubon\hec\TB_VG.p01
Geometry:	Geo Thu Bon - Vu Gia	D:\wetspathubon\hec\TB_VG.g01
Steady Flow:		
Unsteady Flow:	Unsteady Flow 2008	D:\wetspathubon\hec\TB_VG.u01
Description :		Version 4.0 Beta SI Units

🖹 😫 🛜 - 5:07 PM

								100				
BIDBtbon.doc - Microsoft Word											Tupe a question	a far bala
Ele Edit View Insert Format Loois Table Window Help		- 01	Ti Dund	: da more	-l : 10 -k 3u	at al Matian	_				Type a quesuor	, Tor help
		- 0	H Kead	: H Norm	ai + 12 pt, Ju	st 🖌 .vn i ime	9	-		╒╶═╶═ <mark>╵</mark> ┋╞╶╵┊═╶		• • • •
	TRUNG TÂM KTTV	QUỐC G	IA CĈ	ONG HO	À XÃ HÔ	I CHỦ N	GHĪA V	IÊT N	AM			
	Trung tâm Dự báo	KTTV TV	W	Đợ	oc lập - T	ự do - Ha	nh phú	ç				
	So: HN/0	5		-								
	BẢN TIN	DU BÁ	O KHÍ	TƯỢN	G THU	<u>Ý VĂN</u>	HẠN I	IGÅN	T			
		(L	uu vuc	sông Vi	<mark>i Gia –</mark>	Thu Bối	1)					
	I. Dashéa mura hay		nên a Tê	. Cia	The D	5	24 -12	4.				
	1- Dự bào mba hu	vục song	, song v	u Gui –	Inu Do	<i>n</i> trong	24 gi0	01				
	II. Derbár (bårer)	_										
	11 - Dự bào thuy và Nhận với	n										
	<u>tulan Act</u>											
	<u>Dư báo</u>											
	₽		Thu	re đo			Dırb	áo				
	Trạm		Neàv 08/	$\frac{12}{12} - 09/1$	2	No	àv 09/12	2 - 09/1	2			
		13 h	19 h	1 h	- 7 h	13 h	19 h	1 h	7 h			
	Aí nghĩa H, cm	485	481	476	469	412.5	412	398	390			
	Q, m ³ /s	236	230	223	213	133	133	118	111			
	Cẩm lệ H, cm	37	74	14	29	22.5	25.4	28.3	28.3			
	Q, m ³ /s	314	528	203	269	237	249	265	265			
	Giao Thủy H, cm	389	378	365	360	352	352	343	334			
	$Q, m^3/s$	1550	1490	1430	1400	1360	1360	1320	1270			
	Thu Bồn H, cm	81	105	66	60	60.7	60.7	60.7	54.7			
	Q, m ³ /s	1010	1250	860	800	808	808	808	748			
	Hội An H, cm	46	81	25	35	29.9	34.8	34.8	39.8			
	$Q, m^3/s$	1140	1660	860	985	919	983	983	1050			
				Hà Nội,	10h, ngà	y 9 tháng	12 năm	2008				
				Ngườ	i dự báo :	Vũ Đức	Long					
				Ngườ	vi duyệt b	ản tin: Bì	i Đức L	ong				•
= a <u>a</u> 2 @ <	1								B a			>
Draw - 🔓 AutoShapes - 🔪 🔪 🗆 🔿 🎦 🐗 🚱 🐼 - 🚄 - A	↓ = = ≓ ■ ■											
Page 1 Sec 1 1/1 At 117mm Ln 14 Col 1 REC TRK EXT O	VR English (U.S.)											
🛃 start 🛛 💢 D:\wetspathub 🚔 VuGiaThuBon 🐚 Ch-¬ng Tr×	×nh 📲 help.doc - Micro 🖡	BTDBtbor	n.doc 📔	🦉 untitled	- Paint						< E 9	🛜 5:24 PM
									× 9	1 1 1 2		

Flood Forecasting bulletin

This software was experimented on flood forecasting for Thu Bon - Vu Gia river system in flood season 2008 and gave quite good results .

Conclusion

The WETSPA model was calibrated and validated on upstream watersheds in Thu Bon - Vu Gia river basin for which topography, land-use and soil data are available in GIS form

HECRAS model was developed for the hydraulic simulations in this area using the upstream boundary data calculated by the Wetspa model and downstream boundary tidal data.

These results for calibration and verification indicate that the model is suitable for both peak flow prediction and hydrograph simulation.

Flood forecasting software based on two models was developed. This software was experimented on flood forecasting for Thu Bon – Vu Gia river system in flood season 2008 and gave quite good results .

Improvement

Precipitation data: as mentioned above, in this application the grid of precipitation is estimated using Thiessen method. In the future, grid precipitation estimated from radar, satellite image will be developed to improve the quality of model.

