

Mar. 5-7, 2009 MAHASRI/HyARC Danang, Vietnam

Interannual Variation in the Seasonal Northward Movement of the Baiu Front in the Western North Pacific

Tomohiko Tomita

Kumamoto University / FRCGC, JAMSTEC tomita@sci.kumamoto-u.ac.jp Masami Nonaka, Tsuyoshi Yamaura

Introduction

- The Baiu/Mei-yu frontal activity has interannual variability, which is associated with the ENSO or TBO. (e.g. Nitta et al. 1987, Tanaka 1997, Tomita et al. 2004 and so on).
- 2. The Baiu front shows a seasonal northward excursion from May to July in the western North Pacific.
- 3. The interannual variations of the northward excursion Seasonal prediction of the Baiu rainfall in Japan

Objectives

- 1. To reveal the interannual tendencies in the northward excursion of the Baiu front.
- 2. To understand the physical mechanisms (Roles of the upper ocean thermal inertia)
 - The findings contribute to improve the seasonal prediction of the Baiu frontal activity.
- Key Words -

the Baiu front, ENSO, the atmospheric bridge, MLD

Data and Methodology

<Used datasets>

- (1) GPCP: Global precipitation
- (2) NCEP-DOE AMIP II: Atmos. surface variables
 - (3) SODA: Parameters in the upper ocean
 - (global gridded data, 1979-2003 (25 yrs), monthly)

<Methodology>

- (1) Extended EOF (EEOF)
- (applied to the GPCP precipitation from May to July)(2) Composite and correlation analyses based on the score time series, and so on.

Seasonal Movement of the Baiu Front from May to July

(1) May to June

northward shift + enhancement

(2) June to July

further northward shift W. Pacific, 20°N = enhancement

(3) Large STD = Large mean northward shift coincidently

(color: mean, contour: STD)

Interannual Variability in the Northward Shift of the Baiu Front

, partially 50%

- EEOF of precipitation in May-July
 (1) 1st mode = STD distribution
 (2) Northward shift
 (3) May-June: changed = + to (4) June-July: maintained = to -
- (5) July: + maximum along 20° N

EEOF-1 (15.2%) (color: STD, contour: eigen vector)

Time variability in EEOF1 (Score Time Series)

Correlations between Score and Precipitation in the Active Centers

Table 1

	May	June	July	NINO3
Score	+0.40	-0.44	-0.61	-0.49

(color: 95% significance (= ± 0.4))

(1) significant high correlations in MJJ(2) from May to June, the polarity is changed(3) high correlation with ENSO

Persistence of SSTAs in the WNP

Northward movement of the Baiu front and anomalous low level atmospheric circulations

(composite analysis based on the score time series)

MLD, (u, v), and persistence of SSTAs

DS: COLA/IGES (seasonal change of MLD and (u, v))

Surface heat fluxes (SR+LR+LH+SH) and persistence of SSTAs

Local correlations between SST and precipitation

Summary

In the WNP, the Baiu precipitation anomalies tend to change their polarity in the northward movement from May to June.

Seasonal prediction of the Baiu precipitation

- Physical processes of the change -

(1) S of 20° N, MLD is deep

=> Large heat capacity => Persistence of SSTA

(2) The atmospheric bridge => Fix the surface divergence/convergence anomalies in the tropics and extratropics

(3) Seasonal northward shift of the Baiu front in the mean P field=> the northward shift of the P anomalies

(4) From May to June, the P anomalies move on the anomalous conv. and then on the anomalous div.

(5) The change of polarity in P anomaly occurs from May to June=> Application to the seasonal weather forecast.